Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Life Sciences

Assessment Of The Effects Of Climate Change On Evapotranspiration With An Improved Elasticity Method In A Nonhumid Area, Lei Tian, Jiming Jin, Pute Wu, Guo-Yue Niu Dec 2018

Assessment Of The Effects Of Climate Change On Evapotranspiration With An Improved Elasticity Method In A Nonhumid Area, Lei Tian, Jiming Jin, Pute Wu, Guo-Yue Niu

Watershed Sciences Faculty Publications

Climatic elasticity is a crucial metric to assess the hydrological influence of climate change. Based on the Budyko equation, this study performed an analytical derivation of the climatic elasticity of evapotranspiration (ET). With this derived elasticity, it is possible to quantitatively separate the impacts of precipitation, air temperature, net radiation, relative humidity, and wind speed on ET in a watershed. This method was applied in the Wuding River Watershed (WRW), located in the center of the Yellow River Watershed of China. The estimated rate of change in ET caused by climatic variables is −10.69 mm/decade, which is close to the …


Quantifying The Impact Of Climate Change And Human Activities On Streamflow In A Semi-Arid Watershed With The Budyko Equation Incorporating Dynamic Vegetation Information, Lei Tian, Jiming Jin, Pute Wu, Guo-Yue Niu Dec 2018

Quantifying The Impact Of Climate Change And Human Activities On Streamflow In A Semi-Arid Watershed With The Budyko Equation Incorporating Dynamic Vegetation Information, Lei Tian, Jiming Jin, Pute Wu, Guo-Yue Niu

Watershed Sciences Faculty Publications

Understanding hydrological responses to climate change and land use and land cover change (LULCC) is important for water resource planning and management, especially for water-limited areas. The annual streamflow of the Wuding River Watershed (WRW), the largest sediment source of the Yellow River in China, has decreased significantly over the past 50 years at a rate of 5.2 mm/decade. Using the Budyko equation, this study investigated this decrease with the contributions from climate change and LULCC caused by human activities, which have intensified since 1999 due to China’s Grain for Green Project (GFGP). The Budyko parameter that represents watershed characteristics …


Breeding For Resilience To Increasing Temperatures: A Field Trial Assessing Genetic Variation In Soft Red Winter Wheat, Kathleen Russell, David Van Sanford Dec 2018

Breeding For Resilience To Increasing Temperatures: A Field Trial Assessing Genetic Variation In Soft Red Winter Wheat, Kathleen Russell, David Van Sanford

Plant and Soil Sciences Faculty Publications

Breeding for resilience to climate change is a daunting prospect. Crop and climate models tell us that global wheat yields are likely to decline as the climate warms, causing a significant risk to global food security. High temperatures are known to affect crop development yet breeding for tolerance to heat stress is difficult to achieve in field environments. We conducted an active warming study over two years to quantify the effects of heat stress on genetic variation of soft red winter (SRW) wheat (Triticum aestivum L.). Forty SRW cultivars and breeding lines were chosen based on marker genotypes at …


Climate And Plant Controls On Soil Organic Matter In Coastal Wetlands, Michael J. Osland, Christopher A. Gabler, James B. Grace, Richard H. Day, Meagan L. Mccoy, Jennie L. Mcleod, Andrew S. From, Nicholas M. Enwright, Laura C. Feher, Camille L. Stagg Jun 2018

Climate And Plant Controls On Soil Organic Matter In Coastal Wetlands, Michael J. Osland, Christopher A. Gabler, James B. Grace, Richard H. Day, Meagan L. Mccoy, Jennie L. Mcleod, Andrew S. From, Nicholas M. Enwright, Laura C. Feher, Camille L. Stagg

School of Earth, Environmental, and Marine Sciences Faculty Publications and Presentations

Coastal wetlands are among the most productive and carbon‐rich ecosystems on Earth. Long‐term carbon storage in coastal wetlands occurs primarily belowground as soil organic matter (SOM). In addition to serving as a carbon sink, SOM influences wetland ecosystem structure, function, and stability. To anticipate and mitigate the effects of climate change, there is a need to advance understanding of environmental controls on wetland SOM. Here, we investigated the influence of four soil formation factors: climate, biota, parent materials, and topography. Along the northern Gulf of Mexico, we collected wetland plant and soil data across elevation and zonation gradients within 10 …