Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Life Sciences

Is Climate Change Causing The Range Contraction Of Cape Rock-Jumpers (Chaetops Frenatus)?, Gregory D. Duckworth, Raquel A. Garcia, Rheinhardt Scholtz, Res Altwegg Sep 2023

Is Climate Change Causing The Range Contraction Of Cape Rock-Jumpers (Chaetops Frenatus)?, Gregory D. Duckworth, Raquel A. Garcia, Rheinhardt Scholtz, Res Altwegg

Department of Agronomy and Horticulture: Faculty Publications

Species distribution models often suggest strong links between climate and species' distribution boundaries and project large distribution shifts in response to climate change. However, attributing distribution shifts to climate change requires more than correlative models. One idea is to examine correlates of the processes that cause distribution shifts, namely colonization and local extinction, by using dynamic occupancy models. The Cape Rock-jumper (Chaetops frenatus) has disappeared over most of its distribution where temperatures are the highest. We used dynamic occupancy models to analyse Cape Rock-jumper distribution with respect to climate (mean temperature and precipitation over the warmest annual quarter), …


Agricultural Research Service Weed Science Research: Past, Present, And Future, Stephen L. Young, James V. Anderson, Scott R. Baerson, Joanna Bajsa-Hirschel, Dana M. Blumenthal, Chad S. Boyd, Clyde D. Boyette, Eric B. Brennan, Charles L. Cantrell, Wun S. Chao, Joanne C. Chee-Sanford, Charlie D. Clements, F. Allen Dray, Stephen O. Duke, Kayla M. Eason, Reginald S. Fletcher, Michael R. Fulcher, Brenda J. Grewell, Erik P. Hamerlynck, Robert E. Hoagland, David P. Horvath, Eugene P. Law, Daniel E. Martin, Clint Mattox, Steven B. Mirsky, Patrick J. Moran, Rebecca C. Mueller, Vijay K. Nandula, Beth A. Newingham, Zhiqiang Pan, Lauren M. Porensky, Paul D. Pratt, Andrew J. Price, Brian G. Rector, Krishna N. Reddy, Roger L. Sheley, Lincoln Smith, Melissa C. Smith, Keirith A. Snyder, Matthew A. Tancos Jul 2023

Agricultural Research Service Weed Science Research: Past, Present, And Future, Stephen L. Young, James V. Anderson, Scott R. Baerson, Joanna Bajsa-Hirschel, Dana M. Blumenthal, Chad S. Boyd, Clyde D. Boyette, Eric B. Brennan, Charles L. Cantrell, Wun S. Chao, Joanne C. Chee-Sanford, Charlie D. Clements, F. Allen Dray, Stephen O. Duke, Kayla M. Eason, Reginald S. Fletcher, Michael R. Fulcher, Brenda J. Grewell, Erik P. Hamerlynck, Robert E. Hoagland, David P. Horvath, Eugene P. Law, Daniel E. Martin, Clint Mattox, Steven B. Mirsky, Patrick J. Moran, Rebecca C. Mueller, Vijay K. Nandula, Beth A. Newingham, Zhiqiang Pan, Lauren M. Porensky, Paul D. Pratt, Andrew J. Price, Brian G. Rector, Krishna N. Reddy, Roger L. Sheley, Lincoln Smith, Melissa C. Smith, Keirith A. Snyder, Matthew A. Tancos

United States Department of Agriculture-Agricultural Research Service / University of Nebraska-Lincoln: Faculty Publications

The U.S. Department of Agriculture-Agricultural Research Service (USDA-ARS) has been a leader in weed science research covering topics ranging from the development and use of integrated weed management (IWM) tactics to basic mechanistic studies, including biotic resistance of desirable plant communities and herbicide resistance. ARS weed scientists have worked in agricultural and natural ecosystems, including agronomic and horticultural crops, pastures, forests, wild lands, aquatic habitats, wetlands, and riparian areas. Through strong partnerships with academia, state agencies, private industry, and numerous federal programs, ARS weed scientists have made contributions to discoveries in the newest fields of robotics and genetics, as well …


Optimal Stomatal Theory Predicts Co2 Responses Of Stomatal Conductance In Both Gymnosperm And Angiosperm Trees, Anna Gardner, Mingkai Jiang, David S. Ellsworth, A. Robert Mackenzie, Jeremy Pritchard, Martin Karl Friedrich Bader, Craig V.M. Barton, Carl Bernacchi, Carlo Calfapietra, Kristine Y. Crous, Mirindi Eric Dusenge, Teresa E. Gimeno, Marianne Hall, Shubhangi Lamba, Sebastian Leuzinger, Johan Uddling, Jeffrey Warren, Göran Wallin, Belinda E. Medlyn Feb 2023

Optimal Stomatal Theory Predicts Co2 Responses Of Stomatal Conductance In Both Gymnosperm And Angiosperm Trees, Anna Gardner, Mingkai Jiang, David S. Ellsworth, A. Robert Mackenzie, Jeremy Pritchard, Martin Karl Friedrich Bader, Craig V.M. Barton, Carl Bernacchi, Carlo Calfapietra, Kristine Y. Crous, Mirindi Eric Dusenge, Teresa E. Gimeno, Marianne Hall, Shubhangi Lamba, Sebastian Leuzinger, Johan Uddling, Jeffrey Warren, Göran Wallin, Belinda E. Medlyn

United States Department of Agriculture-Agricultural Research Service / University of Nebraska-Lincoln: Faculty Publications

Optimal stomatal theory predicts that stomata operate to maximise photosynthesis (Anet) and minimise transpirational water loss to achieve optimal intrinsic water-use efficiency (iWUE). We tested whether this theory can predict stomatal responses to elevated atmospheric CO2 (eCO2), and whether it can capture differences in responsiveness among woody plant functional types (PFTs). We conducted a meta-analysis of tree studies of the effect of eCO2 on iWUE and its components Anet and stomatal conductance (gs). We compared three PFTs, using the unified stomatal optimisation (USO) model to account for confounding effects of leaf–air vapour pressure difference (D). We expected smaller gs, but …