Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Life Sciences

Membrane Systems With Limited Parallelism, Bianca Daniela Popa Oct 2006

Membrane Systems With Limited Parallelism, Bianca Daniela Popa

Doctoral Dissertations

Membrane computing is an emerging research field that belongs to the more general area of molecular computing, which deals with computational models inspired from bio-molecular processes. Membrane computing aims at defining models, called membrane systems or P systems, which abstract the functioning and structure of the cell. A membrane system consists of a hierarchical arrangement of membranes delimiting regions, which represent various compartments of a cell, and with each region containing bio-chemical elements of various types and having associated evolution rules, which represent bio-chemical processes taking place inside the cell.

This work is a continuation of the investigations aiming to …


Development Of Self-Assembled Monolayer-Based Cell Culture Platform Towards Fabrication Of A Three-Dimensional Bioreactor, Rajendra Kandoor Aithal Apr 2006

Development Of Self-Assembled Monolayer-Based Cell Culture Platform Towards Fabrication Of A Three-Dimensional Bioreactor, Rajendra Kandoor Aithal

Doctoral Dissertations

The extracellular matrix (ECM) plays an important role in regulating a number of cellular properties and functions like cell differentiation, cell synthesis and degradation, cell viability and proliferation, cell function, and cell aging. Surface modification of planar substrates with self-assembled monolayers (SAMs) is a promising technique to achieve stable ECMs.

In this work, substrates such as silicon (Si), gallium arsenide (GaAs) and indium tin oxide (ITO) substrates were modified with SAMS containing amino (-NH2), methyl (-CH3), thiol (-SH) and carboxylic (-COOH) end groups and characterized using contact angle measurements, surface infrared (IR) spectroscopy and atomic force microscopy (AFM). Different cell …


Development Of A High Spatial Selectivity Tri-Polar Concentric Ring Electrode For Laplacian Electroencephalography (Leeg) System, Kanthaiah Koka Apr 2006

Development Of A High Spatial Selectivity Tri-Polar Concentric Ring Electrode For Laplacian Electroencephalography (Leeg) System, Kanthaiah Koka

Doctoral Dissertations

Brain activity generates electrical potentials that are spatio-temporal in nature. Electroencephalography (EEG) is the least costly and most widely used non-invasive technique for diagnosing many brain problems. It has high temporal resolution but lacks high spatial resolution.

The surface Laplacian will enhance the spatial resolution of EEG as it performs the second spatial derivative of the surface potentials. In an attempt to increase the spatial selectivity, researchers introduced a bipolar electrode configuration using a five point finite difference method (FPM) and others applied a quasi-bipolar (tri-polar with two elements shorted) concentric electrode configuration. To further increase the spatial resolution, the …