Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Biodiversity

PDF

Selected Works

Forest Biology

Publication Year

Articles 1 - 2 of 2

Full-Text Articles in Life Sciences

Estimated Losses Of Plant Biodiversity Across The U.S. From Historical N Deposition From 1985—2010., Christopher M. Clark, Philip E. Morefield, Frank S. Gilliam, Linda H. Pardo Apr 2016

Estimated Losses Of Plant Biodiversity Across The U.S. From Historical N Deposition From 1985—2010., Christopher M. Clark, Philip E. Morefield, Frank S. Gilliam, Linda H. Pardo

Frank S. Gilliam

Although nitrogen (N) deposition is a significant threat to herbaceous plant biodiversity worldwide, it is not a new stressor for many developed regions. Only recently has it become possible to estimate historical impacts nationally for the United States. We used 26 years (1985–2010) of deposition data, with ecosystem-specific functional responses from local field experiments and a national critical loads (CL) database, to generate scenario-based estimates of herbaceous species loss. Here we show that, in scenarios using the low end of the CL range, N deposition exceeded critical loads over 0.38, 6.5, 13.1, 88.6, and 222.1 million ha for the Mediterranean …


Effects Of Experimental Nitrogen Additions On Plant Diversity In Tropical Forests Of Contrasting Disturbance Regimes In Southern China, Xiankai Lu, Jiangming Mo, Frank S. Gilliam, Guirui Yu, Wei Zhang, Yunting Fang, Juan Huang Sep 2012

Effects Of Experimental Nitrogen Additions On Plant Diversity In Tropical Forests Of Contrasting Disturbance Regimes In Southern China, Xiankai Lu, Jiangming Mo, Frank S. Gilliam, Guirui Yu, Wei Zhang, Yunting Fang, Juan Huang

Frank S. Gilliam

Responses of understory plant diversity to nitrogen (N) additions were investigated in reforested forests of contrasting disturbance regimes in southern China from 2003 to 2008: disturbed forest (withharvesting of understory vegetation and litter) and rehabilitated forest (without harvesting). Experimental additions of N were administered as the following treatments: Control, 50 kg N ha1yr1, and 100kg N ha1yr1. Nitrogen additions did not significantly affect understory plant richness, density,and cover in the disturbed forest. Similarly, no significant response was found for canopy closure in thisforest. In the rehabilitated forest, species richness and density showed no significant response to Nadditions; however, understory cover …