Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 9 of 9

Full-Text Articles in Life Sciences

Incidence Of Antibiotic Resistance And Plasmid Content In Freshwater Beach Sand And Water And Clinical Urinary Tract Infection Escherichia Coli Isolates, Robert F. White Dec 2020

Incidence Of Antibiotic Resistance And Plasmid Content In Freshwater Beach Sand And Water And Clinical Urinary Tract Infection Escherichia Coli Isolates, Robert F. White

Biology Theses

Antibiotic-resistant (AR) bacteria have been found in environmental ecosystems including beach sand and water, and pose a serious threat to the mitigation of human and animal disease. The presence of antibiotic residues in the environment, fueled by wastewater effluent and agricultural runoff, may produce selective pressure on introduced microbes such as Escherichia coli, leading to the production of AR populations. This study characterized and compared the antibiotic resistance patterns and plasmid content of E. coli isolated from a freshwater beach and clinical urinary tract infection (UTI) samples. A higher level of antibiotic resistance was expected in clinical (UTI) Escherichia coli …


Phospholipid Remodeling Via Exogenous Polyunsaturated Fatty Acid Uptake Modulates Stress Resistance In Vibrio Cholerae, William Strike May 2020

Phospholipid Remodeling Via Exogenous Polyunsaturated Fatty Acid Uptake Modulates Stress Resistance In Vibrio Cholerae, William Strike

Honors Theses

Antibiotic-resistant pathogens represent an escalating threat to public health worldwide, substantially increasing the burden of healthcare and community-acquired infections. Several factors contribute to the emergence and spread of this threat, including but not limited to improper antibiotic use and prescriptions in health-care settings and the community, increasing global travel and migration from countries that have higher levels of antibiotic-resistant pathogens, and a lack of new antibiotics under development. According to the World Health Organization, rising rates of resistance among Gram-negative bacteria (such as Vibrio cholerae) are of particular concern. These bacteria have evolved a number of endogenous membrane remodeling strategies …


Antimicrobial Properties Of An Unknown Microorganism Isolated From The Local Environment, Danielle Duryea Apr 2020

Antimicrobial Properties Of An Unknown Microorganism Isolated From The Local Environment, Danielle Duryea

Undergraduate Honors Thesis Projects

Bacterial species that cause disease can usually be combatted with antibiotics; but as the years pass, more and more bacterial pathogens are becoming resistant to these treatments. In fact, the Center for Disease Control has identified eighteen classes of bacteria ranging from urgent to concerning threats due antibiotic resistance (2019), warning the advance of an antibiotic resistance crisis in which untreatable bacterial infections will become a leading cause of death (Bennadi, 2014). The Small World Initiative is a program created in 2012 at Yale University to address the antibiotic crisis through a crowdsourcing effort where undergraduate students are encouraged to …


Identification Of Uncommon Antibiotic-Producing Illinois Soil Isolates, Lesly Muniz, Dr. Lori Scott Jan 2020

Identification Of Uncommon Antibiotic-Producing Illinois Soil Isolates, Lesly Muniz, Dr. Lori Scott

Identifying and Characterizing Novel Antibiotic Producing Microbes From the Soil

This project is a collaboration with the Tiny Earth Project Initiative (TEPI), which is a global network of educators and students focused on student sourcing antibiotic discovery from the soil. We researched tester strains B. subtilis and E. coli from the soil isolates obtained. We further verified if the isolates were common antibiotic bacteria. Unfortunately, this project heavily relied on biochemical tests, colony morphology, and Gram stains to reject or fail to reject our hypothesis. Our goal was to discover new antibiotic-producing bacteria that could be beneficial in combating ESKAPE strains. A proper PCR and DNA extraction would be required …


Isolated Antibiotic Producing Bacteria In Local Soil Samples Determined To Be Bacillus, Cassidy Potter, Dr. Lori Scott Jan 2020

Isolated Antibiotic Producing Bacteria In Local Soil Samples Determined To Be Bacillus, Cassidy Potter, Dr. Lori Scott

Identifying and Characterizing Novel Antibiotic Producing Microbes From the Soil

Nosocomial pathogens are multi-drug resistant to antibiotics that fight bacterial infections posing danger to the public health, the most dangerous of them being the ESKAPE pathogens (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter spp.). This project is a collabortaion with the TIny Earth Project Initiative (TEPI), which is a global network of educators and students focused on studentsourcing antibiotic discovery from the soil. TEPI allows student-led research on local soil samples from Bettendorf, IA to discover potential novel antibiotic producing bacteria that could potentially treat ESKAPE pathogens and reduce public health risk. Two soil isolates …


Pseudomonas And Bacillus Soil Isolates Produce Antibiotics, Chelsea Brandt, Dr. Lori Scott Jan 2020

Pseudomonas And Bacillus Soil Isolates Produce Antibiotics, Chelsea Brandt, Dr. Lori Scott

Identifying and Characterizing Novel Antibiotic Producing Microbes From the Soil

The recent emergence of antibiotic resistance bacterial strains presents a significant challenge and threat to human healthcare. While new methods of treatment such as bacteriophage therapy and combinations of existing antibiotics are being researched, the human population is in dire need of new antibiotics to replace those that are ineffective. This research addresses this need by identifying antibiotic producing bacteria in a soil sample from Davenport, IA. This project is a collaboration with the Tiny Earth Project Initiative (TEPI), which is a global network of educators and students focused on studentsourcing antibiotic discovery from soil. Microbiology lab techniques and 16S …


Identification Of Antibiotic Producing Soil Bacteria Against Bacillus Subtilis, Morgan Brockhouse, Dr. Lori Scott Jan 2020

Identification Of Antibiotic Producing Soil Bacteria Against Bacillus Subtilis, Morgan Brockhouse, Dr. Lori Scott

Identifying and Characterizing Novel Antibiotic Producing Microbes From the Soil

This project is a collaboration with the Tiny Earth Project Initiative (TEPI), which is a global network of educators and students focused on student-sourcing antibiotic discovery from soil. Individual strains of soil bacteria were isolated and produced antibiotic against Bacillus subtilis. Two of these samples were sequenced using the 16S rRNA gene to reveal they are very closely related to the genus Pseudomonas.


Development Of Small Molecule Antibiotics Against A Conserved Rna Gene Regulatory Element In Gram-Positive Bacteria, Ville Yrjö Petteri Väre Jan 2020

Development Of Small Molecule Antibiotics Against A Conserved Rna Gene Regulatory Element In Gram-Positive Bacteria, Ville Yrjö Petteri Väre

Legacy Theses & Dissertations (2009 - 2024)

Bacterial infections and the rise of antibiotic resistance, especially multidrug resistant strains, have generated a clear need for discovery of novel therapeutics. Most antibiotics in use today are derivatives of previous antibiotics to which resistance mechanisms already exist, and traditionally they have a single target: either a protein or rRNA. Gram-positive bacteria regulate the expression of several essential genes or operons using a mechanism called the T-box. The T-box is a structurally conserved riboswitch-like gene regulator in the 5’-untranslated region (UTR) of numerous essential genes of Gram-positive bacteria. T-boxes are stabilized by cognate, unacylated tRNA ligands, allowing the formation of …


An Evaluation Of Co-Culture Parameters Effecting Antibiotic Production In Soil Microbes, Rebecca Lindow Jan 2020

An Evaluation Of Co-Culture Parameters Effecting Antibiotic Production In Soil Microbes, Rebecca Lindow

Master's Theses and Doctoral Dissertations

The rise of infections caused by antibiotic resistant bacteria, compounded by a reduction in antibiotic discovery and development, jeopardizes human health. Historically, antibiotics derive from secondary metabolites produced by soil microbes in pure culture, but recent genetic evidence suggests that microbes can produce more secondary metabolites than are currently observed. The modified crowded plate technique directly identifies antibiotic-producing soil microbes that were co-plated with a target pathogen. Here, this technique was refined by testing the effect of a D-alanine auxotrophic target pathogen rather than a prototrophic pathogen as well as investigating conditions most conducive to antibiotic production. Antibiotic producing conditions …