Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 11 of 11

Full-Text Articles in Life Sciences

An Evolving Epigenome That Determines Tissue And Cell Specificity, Renee Louise Sears Dec 2019

An Evolving Epigenome That Determines Tissue And Cell Specificity, Renee Louise Sears

Arts & Sciences Electronic Theses and Dissertations

Understanding the mechanisms driving phenotypic variation is a major goal of biology that unifies classical genetics with the emerging fields of genomics and epigenomics. Human and mouse share over 90% of genes and global tissue-specific patterns of expression are maintained between the species. Thus, it is hypothesized that gene expression is influenced through distinctive regulation among species in order to account for the unmistakable phenotypic divergence. DNA methylation, histone modifications, open chromatin patterns, transcription factor binding, and other epigenetic factors are all associated with shaping, maintaining, and repressing regulatory regions which in turn coordinate gene expression. It is vital to …


Genomic Signatures Of Conflict And Cooperation In Plants And Social Amoebae, Katherine Sylvia Geist Aug 2019

Genomic Signatures Of Conflict And Cooperation In Plants And Social Amoebae, Katherine Sylvia Geist

Arts & Sciences Electronic Theses and Dissertations

Arms races involve bouts of reciprocal co-adaptation to a social environment. We have a strong sense for how arms races drive the evolution of genes in purely antagonistic contexts, such as host-pathogen or predator-prey. In these systems, conflict that produces arms races between two parties results in positive selection – the fixation of adaptive alleles between species – for both parties. However, we do not have an equal sense for how arms races during cooperative enterprises shape genic evolution. If we assume that arms races affect genic evolution similarly regardless of context – antagonistic or cooperative – then we would …


The Role Of Mitofusins In The Osteoclast Lineage, Anna Ballard Aug 2019

The Role Of Mitofusins In The Osteoclast Lineage, Anna Ballard

Arts & Sciences Electronic Theses and Dissertations

Mitochondria exist in a highly dynamic network in many cell types, and mutations in mitochondrial transmembrane GTPase mitofusin2 (MFN2), a key factor that mediates mitochondrial tethering, cause defects in the nervous system. Intriguingly, the skeleton has been overlooked in patients with such mutations. Because expression of MFN2 and its homolog, mitofusin1 (MFN1) increase with maturation of osteoclasts (OCs), which are rich in mitochondria, we sought to determine the role of mitofusins in the OC lineage. Double knockout of Mfn1 and Mfn2 in OC precursors by Lysozyme-M cre reveals that mitofusin activity is required for OC function and maintenance of bone …


Multi-Omic Understanding Of The Evolution Of Xenobiotic Tolerance In Bacterial Isolates And Communities, Tayte Paul Campbell Aug 2019

Multi-Omic Understanding Of The Evolution Of Xenobiotic Tolerance In Bacterial Isolates And Communities, Tayte Paul Campbell

Arts & Sciences Electronic Theses and Dissertations

Xenobiotic compounds are any chemicals that are released into an environment by human action and that occur at concentrations higher than found naturally. Xenobiotics, including aromatic compounds and antibiotics, are recalcitrant to degradation because they are often toxic or mutagenic. Despite this toxicity, bacteria account for a large portion of xenobiotic degradation in the environment. Bacteria are able to adapt to these foreign chemicals, gaining increased levels of tolerance and increased rates of xenobiotic degradation. On the strain level, increased tolerance can be caused by mutations in individual cells or through the acquisition of genes from other cells. At the …


Mechanisms Of Nestmate Recognition Cue Production In The European Honey Bee, Apis Mellifera., Cassondra Leigh Vernier Aug 2019

Mechanisms Of Nestmate Recognition Cue Production In The European Honey Bee, Apis Mellifera., Cassondra Leigh Vernier

Arts & Sciences Electronic Theses and Dissertations

Social insects are some of the world’s most ecologically successful animal groups, and their complex societies are considered one of the pinnacles of animal evolution. Since these organisms live in colonies composed of many individuals and stored resources, they are a target for intruders, such as parasites, predators and conspecific robbers. Therefore, many social insect species have evolved mechanisms for nest defense, including nestmate recognition, where guarding individuals at the entrance of the colony use cues on incoming individuals to determine whether they are nestmates or intruders. Although nestmate recognition is incredibly important for maintaining colony integrity and fitness, the …


Expression And Function Of Snornas In Acute Myeloid Leukemia, Wayne Alsworth Warner Aug 2019

Expression And Function Of Snornas In Acute Myeloid Leukemia, Wayne Alsworth Warner

Arts & Sciences Electronic Theses and Dissertations

Small nucleolar RNAs (snoRNAs) are non-coding RNAs that contribute to ribosome biogenesis and RNA splicing by modifying ribosomal RNA and spliceosome RNAs, respectively. These modifications are critical for a variety of cellular processes, including ribosomal biogenesis and splicing of RNAs. Recent studies have suggested an expanded role for snoRNAs beyond ribosomal biogenesis and splicing, including, regulation of chromatin structure, metabolism, and neoplastic transformation. The contribution of snoRNAs to the regulation of normal and malignant hematopoiesis is largely unknown. The lack of a method to accurately and comprehensively assess snoRNA expression has limited research in this area. In particular, array-based methods …


Secretory Iga Enhances Gut B Cells Priming And Systemic Igg Responses Towards Commensals, You Zhou Aug 2019

Secretory Iga Enhances Gut B Cells Priming And Systemic Igg Responses Towards Commensals, You Zhou

Arts & Sciences Electronic Theses and Dissertations

IgA is the primary antibody response at mucosal surfaces and is reported to inhibit adaptive immune responses against gut bacteria. Here, we utilize an in vitro system to expand and screen IgA memory B cells for their ability to recognize gut bacteria in the context of secretory IgA (sIgA) deficiency in polymeric Ig receptor (Pigr–/–) mice. Contrary to the prevailing hypothesis that IgA provides an immune exclusionary function, we found that mice lacking sIgA showed decreased anti-bacterial IgA specificities as assessed using flow cytometry. IgA B cell responses against certain taxa such as those of order Bacteriodales showed greater dependence …


Understanding The Physiology Of Extracellular Electron Uptake In Purple Nonsulfur Bacteria, Michael Singh Guzman Aug 2019

Understanding The Physiology Of Extracellular Electron Uptake In Purple Nonsulfur Bacteria, Michael Singh Guzman

Arts & Sciences Electronic Theses and Dissertations

Microbially catalyzed oxidation-reduction reactions drive nutrient cycling and energy flux on Earth. Photoautotrophs, which include the cyanobacteria (oxygenic) and purple and green sulfur bacteria (anoxygenic), transform light energy into chemical energy and are responsible for substantial global primary productivity. Anoxygenic phototrophs, in particular, play a crucial role in biogeochemical cycling in anoxic illuminated environments because of their ability to oxidize an array of inorganic compounds for CO2 fixation. Electron donors include molecular hydrogen, nitrite, and reduced sulfur compounds. Recent evidence has also suggested that solid-phase conductive substances (SPCSs), including rust (mixed-valent iron minerals) and their proxies (poised electrodes), can serve …


A Combinatorial Approach Of Ionomics, Quantitative Trait Locus Mapping, And Transcriptome Analysis To Characterize Element Homeostasis In Maize, Alexandra Asaro May 2019

A Combinatorial Approach Of Ionomics, Quantitative Trait Locus Mapping, And Transcriptome Analysis To Characterize Element Homeostasis In Maize, Alexandra Asaro

Arts & Sciences Electronic Theses and Dissertations

In plant systems, genetic and biochemical pathways impact uptake of elements from the soil. These environment-sensitive pathways often act in the root tissue to impact element concentrations throughout the plant. In order to characterize element regulation as well as apply ionomics to understand plant adaptation, perspectives are needed from multiple tissues and environments and from approaches that take interactions between elements into account. The work described in this thesis includes multi-environment and multi-tissue experiments that connect variation in genetic sequence, and in gene expression, with variation in element accumulation. The associations found here include those that are sensitive to environment, …


Defining Gastric Epithelial Cell Population Dynamics At Homeostasis And Following Injury, Joseph Ronald Burclaff May 2019

Defining Gastric Epithelial Cell Population Dynamics At Homeostasis And Following Injury, Joseph Ronald Burclaff

Arts & Sciences Electronic Theses and Dissertations

Gastric diseases affect many people around the world, yet surprisingly little is known about the basic dynamics of gastric epithelial cells. Loss of acid-secreting parietal cells has long been observed to precede pre-cancerous gastric metaplasias like Spasmolytic Polypeptide-Expressing Metaplasia (SPEM), yet no signaling component from dying parietal cells has yet been implicated in initiating the metaplastic responses. Also, experiments pulsing 3H-thymidine and or examining intracellular components suggest that gastric mucous neck cells are short-lived transient intermediates between the gastric stem cell and mature zymogenic “chief” cells, yet specifics about this transition remain elusive. Here, we develop a novel mouse line …


The Role Of The Ascc Complex In The Alkylation Damage Response, Jennifer Soll May 2019

The Role Of The Ascc Complex In The Alkylation Damage Response, Jennifer Soll

Arts & Sciences Electronic Theses and Dissertations

DNA alkylation damage is caused by various agents that are present in the environment as well as cellular metabolism and can be induced by certain chemotherapeutic agents. Thus, the repair of damaged DNA is critical for genomic maintenance. The ALKBH family of proteins plays a central role in the repair of specific alkylated lesions, including 1-methyladenine (1meA) and 3-methylcytosine (3meC). A major outstanding question in the field of alkylation repair is the role of associated protein partners in the function of the human AlkB homologues. Here, I demonstrate that the ALKBH3 associated complex ASCC (comprised of ASCC1, ASCC2, and ASCC3) …