Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 11 of 11

Full-Text Articles in Life Sciences

Increased Interactions And Engulfment Of Dendrites By Microglia Precede Purkinje Cell Degeneration In A Mouse Model Of Niemann Pick Type-C., Larisa Kavetsky, Kayla K Green, Bridget R Boyle, Fawad A K Yousufzai, Zachary M Padron, Sierra E Melli, Victoria L Kuhnel, Harriet M Jackson, Rosa E Blanco, Gareth R Howell, Ileana Soto Reyes Oct 2019

Increased Interactions And Engulfment Of Dendrites By Microglia Precede Purkinje Cell Degeneration In A Mouse Model Of Niemann Pick Type-C., Larisa Kavetsky, Kayla K Green, Bridget R Boyle, Fawad A K Yousufzai, Zachary M Padron, Sierra E Melli, Victoria L Kuhnel, Harriet M Jackson, Rosa E Blanco, Gareth R Howell, Ileana Soto Reyes

Faculty Scholarship for the College of Science & Mathematics

Niemann Pick Type-C disease (NPC) is an inherited lysosomal storage disease (LSD) caused by pathogenic variants in the Npc1 or Npc2 genes that lead to the accumulation of cholesterol and lipids in lysosomes. NPC1 deficiency causes neurodegeneration, dementia and early death. Cerebellar Purkinje cells (PCs) are particularly hypersensitive to NPC1 deficiency and degenerate earlier than other neurons in the brain. Activation of microglia is an important contributor to PCs degeneration in NPC. However, the mechanisms by which activated microglia promote PCs degeneration in NPC are not completely understood. Here, we are demonstrating that in the Npc1nmf164 mouse cerebellum, microglia …


Chromatin Digestion By The Chemotherapeutic Agent Bleomycin Produces Nucleosome And Transcription Factor Footprinting Patterns Similar To Micrococcal Nuclease, Joshua Michael Stolz Sep 2019

Chromatin Digestion By The Chemotherapeutic Agent Bleomycin Produces Nucleosome And Transcription Factor Footprinting Patterns Similar To Micrococcal Nuclease, Joshua Michael Stolz

Theses and Dissertations

Bleomycin (BLM), a glycopeptide antibiotic commonly used in chemotherapeutic treatments, has been shown to produce single and double stranded DNA breaks. Subsequent analysis of DNA fragmentation patterns has demonstrated preferential digestion of chromatin in the TSS of active genes and the ability to produce nucleosome-sized fragments within intact chromatin. Nucleosome positioning plays a critical role in the regulation of gene activation. Currently, micrococcal nuclease (MNase) is used as the standard for mapping the position of nucleosomes in the genome. In order to identify whether BLM can be used as an effective nucleosome-mapping agent, BLM was used to digest chromatin in …


Meox2 Haploinsufficiency Accelerates Axonal Degeneration In Dba/2j Glaucoma, Rebecca A Buchanan, Kate E Foley, Keating W Pepper, Alaina M Reagan, Kelly J Keezer, Amanda A Hewes, Cory A Diemler, Christoph Preuss, Ileana Soto Reyes, Simon W M John, Gareth R Howell Aug 2019

Meox2 Haploinsufficiency Accelerates Axonal Degeneration In Dba/2j Glaucoma, Rebecca A Buchanan, Kate E Foley, Keating W Pepper, Alaina M Reagan, Kelly J Keezer, Amanda A Hewes, Cory A Diemler, Christoph Preuss, Ileana Soto Reyes, Simon W M John, Gareth R Howell

Faculty Scholarship for the College of Science & Mathematics

Purpose: Glaucoma is a complex disease with major risk factors including advancing age and increased intraocular pressure (IOP). Dissecting these earliest events will likely identify new avenues for therapeutics. Previously, we performed transcriptional profiling in DBA/2J (D2) mice, a widely used mouse model relevant to glaucoma. Here, we use these data to identify and test regulators of early gene expression changes in DBA/2J glaucoma.

Methods: Upstream regulator analysis (URA) in Ingenuity Pathway Analysis was performed to identify potential master regulators of differentially expressed genes. The function of one putative regulator, mesenchyme homeobox 2 (Meox2), was tested using a combination of …


Characterization Of Human Dutpase, Shawna Marie Rotoli Jul 2019

Characterization Of Human Dutpase, Shawna Marie Rotoli

Graduate School of Biomedical Sciences Theses and Dissertations

Deoxyuridine nucleotidyl transferase (dUTPase) is an enzyme found in all organisms that have thymine as a component of DNA. It catalyzes the hydrolysis of dUTP to dUMP and pyrophosphate thus precluding the buildup of dUTP pools as well as providing the substrate, dUMP, for the de novo synthesis of thymidylate. In Homo sapiens, there are four isoforms: mitochondrial (mDut), nuclear (nDut), variant 3 and variant 4. This work is largely focused on nDut. Using structural and MS analyses of recombinant dUTPase constructs, an intermolecular disulfide bridge between cysteine-3 of each nDut monomer was discovered. It was found that these two …


The Yeast Protein Mam33 Functions In The Assembly Of The Mitochondrial Ribosome, Gabrielle A Hillman, Michael F Henry Jun 2019

The Yeast Protein Mam33 Functions In The Assembly Of The Mitochondrial Ribosome, Gabrielle A Hillman, Michael F Henry

Rowan-Virtua School of Osteopathic Medicine Faculty Scholarship

Mitochondrial ribosomes are functionally specialized for the synthesis of several essential inner membrane proteins of the respiratory chain. Although remarkable progress has been made toward understanding the structure of mitoribosomes, the pathways and factors that facilitate their biogenesis remain largely unknown. The long unstructured domains of unassembled ribosomal proteins are highly prone to misfolding and often require dedicated chaperones to prevent aggregation. To date, chaperones that ensure safe delivery to the assembling ribosome have not been identified in the mitochondrion. In this study, a respiratory synthetic lethality screen revealed a role for an evolutionarily conserved mitochondrial matrix protein called Mam33 …


Fishermp: Fully Parallel Algorithm For Detecting Combinatorial Motifs From Large Chip-Seq Datasets., Shaoqiang Zhang, Ying Liang, Xiangyun Wang, Zhengchang Su, Yong Chen Jun 2019

Fishermp: Fully Parallel Algorithm For Detecting Combinatorial Motifs From Large Chip-Seq Datasets., Shaoqiang Zhang, Ying Liang, Xiangyun Wang, Zhengchang Su, Yong Chen

Faculty Scholarship for the College of Science & Mathematics

Detecting binding motifs of combinatorial transcription factors (TFs) from chromatin immunoprecipitation sequencing (ChIP-seq) experiments is an important and challenging computational problem for understanding gene regulations. Although a number of motif-finding algorithms have been presented, most are either time consuming or have sub-optimal accuracy for processing large-scale datasets. In this article, we present a fully parallelized algorithm for detecting combinatorial motifs from ChIP-seq datasets by using Fisher combined method and OpenMP parallel design. Large scale validations on both synthetic data and 350 ChIP-seq datasets from the ENCODE database showed that FisherMP has not only super speeds on large datasets, but also …


Yeast Mitochondrial Protein Pet111p Binds Directly To Two Distinct Targets In Cox2 Mrna, Suggesting A Mechanism Of Translational Activation, Julia L Jones, Katharina B Hofmann, Andrew T Cowan, Dmitry Temiakov, Patrick Cramer, Michael Anikin May 2019

Yeast Mitochondrial Protein Pet111p Binds Directly To Two Distinct Targets In Cox2 Mrna, Suggesting A Mechanism Of Translational Activation, Julia L Jones, Katharina B Hofmann, Andrew T Cowan, Dmitry Temiakov, Patrick Cramer, Michael Anikin

Rowan-Virtua School of Osteopathic Medicine Faculty Scholarship

The genes in mitochondrial DNA code for essential subunits of the respiratory chain complexes. In yeast, expression of mitochondrial genes is controlled by a group of gene-specific translational activators encoded in the nucleus. These factors appear to be part of a regulatory system that enables concerted expression of the necessary genes from both nuclear and mitochondrial genomes to produce functional respiratory complexes. Many of the translational activators are believed to act on the 5'-untranslated regions of target mRNAs, but the molecular mechanisms involved in this regulation remain obscure. In this study, we used a combination of in vivo and in …


Times Of Action And Evolutionary Conservation Of Heterochronic Genes, Maria Ivanova, Eric G. Moss May 2019

Times Of Action And Evolutionary Conservation Of Heterochronic Genes, Maria Ivanova, Eric G. Moss

Rowan-Virtua Research Day

Specific genes called heterochronic genes control the timing and sequence of developmental events during larval stages of C. elegans. Mutations in heterochronic genes can cause skipping or reiteration of cell fates associated with certain larval stages. lin-14 and lin-28 are two well-studied heterochronic genes. LIN-14 acts during the first larval stage (L1) and controls events of the L1 and L2 stages, LIN-28 acts during the L2 stage and controls its events.


A Dedicated Chaperone Mediates The Safe Transfer Of Mitoribosomal Proteins To Their Site Of Assembly, Gabrielle Ashley Hillman May 2019

A Dedicated Chaperone Mediates The Safe Transfer Of Mitoribosomal Proteins To Their Site Of Assembly, Gabrielle Ashley Hillman

Graduate School of Biomedical Sciences Theses and Dissertations

Mitochondrial ribosomes are functionally specialized for the synthesis of several essential inner membrane proteins of the respiratory chain. While remarkable progress has recently been made towards understanding the structure of mitoribosomes, the unique pathways and factors that facilitate their biogenesis remain largely unknown. This dissertation defines the physiological role of an evolutionarily conserved yeast protein called Mam33 in mitochondrial ribosome assembly. The biomedical relevance of this finding stems from the fact that mutations or changes in its expression of the human ortholog p32 result in mitochondrial dysfunction. In human patients, bi-allelic mutations cause severe multisystemic defects in mitochondrial energy metabolism, …


Enhancing Face Validity Of Mouse Models Of Alzheimer's Disease With Natural Genetic Variation., Kristen D Onos, Asli Uyar, Kelly J Keezer, Harriet M Jackson, Christoph Preuss, Casey J Acklin, Rita O'Rourke, Rebecca Buchanan, Travis L Cossette, Stacey J Sukoff Rizzo, Ileana Soto Reyes, Gregory W Carter, Gareth R Howell May 2019

Enhancing Face Validity Of Mouse Models Of Alzheimer's Disease With Natural Genetic Variation., Kristen D Onos, Asli Uyar, Kelly J Keezer, Harriet M Jackson, Christoph Preuss, Casey J Acklin, Rita O'Rourke, Rebecca Buchanan, Travis L Cossette, Stacey J Sukoff Rizzo, Ileana Soto Reyes, Gregory W Carter, Gareth R Howell

Faculty Scholarship for the College of Science & Mathematics

Classical laboratory strains show limited genetic diversity and do not harness natural genetic variation. Mouse models relevant to Alzheimer's disease (AD) have largely been developed using these classical laboratory strains, such as C57BL/6J (B6), and this has likely contributed to the failure of translation of findings from mice to the clinic. Therefore, here we test the potential for natural genetic variation to enhance the translatability of AD mouse models. Two widely used AD-relevant transgenes, APPswe and PS1de9 (APP/PS1), were backcrossed from B6 to three wild-derived strains CAST/EiJ, WSB/EiJ, PWK/PhJ, representative of three Mus musculus subspecies. These new AD strains were …


Cyclin C: The Story Of A Non-Cycling Cyclin., Jan Ježek, Daniel G J Smethurst, David C Stieg, Z A C Kiss, Sara E Hanley, Vidyaramanan Ganesan, Kai-Ti Chang, Katrina F Cooper, Randy Strich Jan 2019

Cyclin C: The Story Of A Non-Cycling Cyclin., Jan Ježek, Daniel G J Smethurst, David C Stieg, Z A C Kiss, Sara E Hanley, Vidyaramanan Ganesan, Kai-Ti Chang, Katrina F Cooper, Randy Strich

Rowan-Virtua School of Osteopathic Medicine Faculty Scholarship

The class I cyclin family is a well-studied group of structurally conserved proteins that interact with their associated cyclin-dependent kinases (Cdks) to regulate different stages of cell cycle progression depending on their oscillating expression levels. However, the role of class II cyclins, which primarily act as transcription factors and whose expression remains constant throughout the cell cycle, is less well understood. As a classic example of a transcriptional cyclin, cyclin C forms a regulatory sub-complex with its partner kinase Cdk8 and two accessory subunits Med12 and Med13 called the Cdk8-dependent kinase module (CKM). The CKM reversibly associates with the multi-subunit …