Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Life Sciences

A Parallelized Implementation Of Cut-And-Solve And A Streamlined Mixed-Integer Linear Programming Model For Finding Genetic Patterns Optimally Associated With Complex Diseases, Michael Yip-Hin Chan Nov 2018

A Parallelized Implementation Of Cut-And-Solve And A Streamlined Mixed-Integer Linear Programming Model For Finding Genetic Patterns Optimally Associated With Complex Diseases, Michael Yip-Hin Chan

Theses

With the advent of genetic sequencing, there was much hope of finding the inherited elements underlying complex diseases, such as late-onset Alzheimer’s disease (AD), but it has been a challenge to fully uncover the necessary information hidden in the data. A likely contributor to this failure is the fact that the pathogenesis of most complex diseases does not involve single markers working alone, but patterns of genetic markers interacting additively or epistatically. But as we move upwards beyond patterns of size two, it quickly becomes computationally infeasible to examine all combinations in the solution space. A common solution to solving …


Efficient Reduced Bias Genetic Algorithm For Generic Community Detection Objectives, Aditya Karnam Gururaj Rao Apr 2018

Efficient Reduced Bias Genetic Algorithm For Generic Community Detection Objectives, Aditya Karnam Gururaj Rao

Theses

The problem of community structure identification has been an extensively investigated area for biology, physics, social sciences, and computer science in recent years for studying the properties of networks representing complex relationships. Most traditional methods, such as K-means and hierarchical clustering, are based on the assumption that communities have spherical configurations. Lately, Genetic Algorithms (GA) are being utilized for efficient community detection without imposing sphericity. GAs are machine learning methods which mimic natural selection and scale with the complexity of the network. However, traditional GA approaches employ a representation method that dramatically increases the solution space to be searched by …