Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Life Sciences

The Role Of Orphan Nuclear Receptor Dax-1 (Nr0b1) In Human Breast Cancer Cells: Expression, Proliferation And Metastasis, Erin Dishington Dec 2017

The Role Of Orphan Nuclear Receptor Dax-1 (Nr0b1) In Human Breast Cancer Cells: Expression, Proliferation And Metastasis, Erin Dishington

Master's Theses

The orphan nuclear hormone receptor DAX-1 (Dosage Sensitive Sex Reversal, Adrenal Hypoplasia Congenita on the X Chromosome, gene 1) plays an important role in the development of adrenal and gonadal tissues and functions as a global negative-regulator of steroidogenesis. In addition, it is known to be involved in several diseases including some cancers. Herein, we describe our examination of the role of DAX-1 in breast cancer, specifically its influence on proliferation and metastasis and its expression during progressive stages of disease. In an effort to understand how DAX-1 influences breast cancer cell proliferation and metastasis, we used MCF7 breast cancer …


A Neuroprotective Role For Mir-1017, A Non-Canonical Mirna, Matthew De Cruz Dec 2017

A Neuroprotective Role For Mir-1017, A Non-Canonical Mirna, Matthew De Cruz

Master's Theses

miRNAs are post-transcriptional regulators of gene expression, with numerous being involved in neurobiology. Within the human genome a quarter of the identified miRNA loci derive from a class of miRNAs termed tailed mirtrons. Despite the identification of this large population of miRNA, no functional studies have been conducted to identify their role. In this study we examined the highly expressed and deeply conserved Drosophila 3’ tail mirtron, miR-1017, as a candidate to elucidate tailed mirtron functionality. We identified acetylcholine receptor transcripts, Da5 and Da2, as bona fide targets for miR-1017. Interestingly, Da2 is also the host transcript for miR-1017. We …


The Population Genetics Of Morro Bay Eelgrass (Zostera Marina), Julia Gardner Harencar Jun 2017

The Population Genetics Of Morro Bay Eelgrass (Zostera Marina), Julia Gardner Harencar

Master's Theses

Seagrass populations are in decline worldwide. Zostera marina (eelgrass), one of California’s native seagrasses, is no exception to this trend. In the last 8 years, Morro Bay, California has lost 95% of its eelgrass. Eelgrass is an ecosystem engineer, providing important ecosystem services such as sediment stabilization, nutrient cycling, and nursery habitats for fish. The failure of recent restoration efforts necessitates a better understanding of the causes of eelgrass decline in this estuary. Previous research on eelgrass in California has demonstrated a link between population genetic diversity and eelgrass bed health, ecosystem functioning, and resilience to disturbance and extreme climatic …


An Assessment Of Potential False Positive E.Coli Pyroprints In The Cplop Database, Skyler A. Gordon Feb 2017

An Assessment Of Potential False Positive E.Coli Pyroprints In The Cplop Database, Skyler A. Gordon

Master's Theses

The genetic information found in each species of organism is unique, and can be used as a tool to differentiate at the molecular level. This has caused rapid genotyping methods to become the cornerstone of a new area of research dependent on reading the genome as a form of identification. One of these specific identification methods, known as pyroprinting, relies on the small variation of DNA sequences within the same species to develop a unique, reproducible fingerprint. By simultaneously pyrosequencing multiple polymorphic loci within the ribosomal operons known as the intergenic transcribed spacers, a reproducible output is obtained, known as …


Araucaria In The Urban Landscape: A Novel Leaning Pattern And Evidence Of Cultivated Hybridization, Jason W. Johns Jan 2017

Araucaria In The Urban Landscape: A Novel Leaning Pattern And Evidence Of Cultivated Hybridization, Jason W. Johns

Master's Theses

Our understanding of the natural world is constantly evolving and strengthening as more observations are made and experiments are performed. For example, we understand that tree stems grow toward the light (positive phototropism; Darwin 1880, Loehle 1986, Christie et al. 2013) and against gravity (negative gravitropism; Knight 1806, Hashiguchi et al. 2013). We also know that plants respond to mechanical stimulus and perturbation (thigmotropism; Braam 2005). Genes and their resulting proteins have been described to uncover some of the mechanisms for these environmental responses, but relatively speaking, we have just scratched the surface (Wyatt et al. 2013). While the discovery …