Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

2015

Genetics and Genomics

Female

Dartmouth Scholarship

Articles 1 - 2 of 2

Full-Text Articles in Life Sciences

Genome-Wide Meta-Analysis In Alopecia Areata Resolves Hla Associations And Reveals Two New Susceptibility Loci, Regina C. Betz, Lynn Petukhova, Stephan Ripke, Hailiang Huang, Androniki Menelaou, Silke Redeler, Tim Becker, Stefanie Heilmann, Tarek Yamany, Madeleine Duvic, Maria Hordinsky, David Norris, Vera H. Price, Julian Mackay-Wiggan, Annemieke De Jong, Gina M. Destefano, Susanne Moebus, Markus Böhm, Ulrike Blume-Peytavi, Hans Wolff, Gerhard Lutz, Roland Kruse, Li Bian, Christopher I. Amos Jul 2015

Genome-Wide Meta-Analysis In Alopecia Areata Resolves Hla Associations And Reveals Two New Susceptibility Loci, Regina C. Betz, Lynn Petukhova, Stephan Ripke, Hailiang Huang, Androniki Menelaou, Silke Redeler, Tim Becker, Stefanie Heilmann, Tarek Yamany, Madeleine Duvic, Maria Hordinsky, David Norris, Vera H. Price, Julian Mackay-Wiggan, Annemieke De Jong, Gina M. Destefano, Susanne Moebus, Markus Böhm, Ulrike Blume-Peytavi, Hans Wolff, Gerhard Lutz, Roland Kruse, Li Bian, Christopher I. Amos

Dartmouth Scholarship

Alopecia areata (AA) is a prevalent autoimmune disease with ten known susceptibility loci. Here we perform the first meta-analysis in AA by combining data from two genome-wide association studies (GWAS), and replication with supplemented ImmunoChip data for a total of 3,253 cases and 7,543 controls. The strongest region of association is the MHC, where we fine-map 4 independent effects, all implicating HLA-DR as a key etiologic driver. Outside the MHC, we identify two novel loci that exceed statistical significance, containing ACOXL/BCL2L11(BIM) (2q13); GARP (LRRC32) (11q13.5), as well as a third nominally significant region SH2B3(LNK)/ ATXN2 (12q24.12). Candidate susceptibility gene expression …


Systems Level Analysis Of Systemic Sclerosis Shows A Network Of Immune And Profibrotic Pathways Connected With Genetic Polymorphisms, J. Matthew Mahoney, Jaclyn Taroni, Viktor Martyanov, Tammara A. A. Wood, Casey S. Greene, Patricia A. Pioli, Monique E. Hinchcliff, Michael L. Whitfield Jan 2015

Systems Level Analysis Of Systemic Sclerosis Shows A Network Of Immune And Profibrotic Pathways Connected With Genetic Polymorphisms, J. Matthew Mahoney, Jaclyn Taroni, Viktor Martyanov, Tammara A. A. Wood, Casey S. Greene, Patricia A. Pioli, Monique E. Hinchcliff, Michael L. Whitfield

Dartmouth Scholarship

Systemic sclerosis (SSc) is a rare systemic autoimmune disease characterized by skin and organ fibrosis. The pathogenesis of SSc and its progression are poorly understood. The SSc intrinsic gene expression subsets (inflammatory, fibroproliferative, normal-like, and limited) are observed in multiple clinical cohorts of patients with SSc. Analysis of longitudinal skin biopsies suggests that a patient's subset assignment is stable over 6-12 months. Genetically, SSc is multi-factorial with many genetic risk loci for SSc generally and for specific clinical manifestations. Here we identify the genes consistently associated with the intrinsic subsets across three independent cohorts, show the relationship between these genes …