Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

2015

Genetics and Genomics

Caenorhabditis elegans Proteins

Articles 1 - 12 of 12

Full-Text Articles in Life Sciences

Rna Recognition By The Caenorhabditis Elegans Oocyte Maturation Determinant Oma-1, Ebru Kaymak, Sean Ryder Oct 2015

Rna Recognition By The Caenorhabditis Elegans Oocyte Maturation Determinant Oma-1, Ebru Kaymak, Sean Ryder

Sean P. Ryder

Maternally supplied mRNAs encode proteins that pattern early embryos in many species. In the nematode Caenorhabditis elegans, a suite of RNA-binding proteins regulates expression of maternal mRNAs during oogenesis, the oocyte to embryo transition, and early embryogenesis. To understand how these RNA-binding proteins contribute to development, it is necessary to determine how they select specific mRNA targets for regulation. OMA-1 and OMA-2 are redundant proteins required for oocyte maturation--an essential part of meiosis that prepares oocytes for fertilization. Both proteins have CCCH type tandem zinc finger RNA-binding domains. Here, we define the RNA binding specificity of OMA-1 and demonstrate that …


Inhibiting Mirna In Caenorhabditis Elegans Using A Potent And Selective Antisense Reagent, Genhua Zheng, Victor R. Ambros, Wen-Hong Li Oct 2015

Inhibiting Mirna In Caenorhabditis Elegans Using A Potent And Selective Antisense Reagent, Genhua Zheng, Victor R. Ambros, Wen-Hong Li

Victor R. Ambros

BACKGROUND: Antisense reagents can serve as efficient and versatile tools for studying gene function by inhibiting nucleic acids in vivo. Antisense reagents have particular utility for the experimental manipulation of the activity of microRNAs (miRNAs), which are involved in the regulation of diverse developmental and physiological pathways in animals. Even in traditional genetic systems, such as the nematode Caenorhabditis elegans, antisense reagents can provide experimental strategies complementary to mutational approaches. Presently no antisense reagents are available for inhibiting miRNAs in the nematode C. elegans. RESULTS: We have developed a new class of fluorescently labelled antisense reagents to inhibit miRNAs in …


The Decapping Scavenger Enzyme Dcs-1 Controls Microrna Levels In Caenorhabditis Elegans, Gabriel Bosse, Stefan Ruegger, Maria Ow, Alejandro Vasquez-Rifo, Evelyne Rondeau, Victor Ambros, Helge Grosshans, Martin Simard Oct 2015

The Decapping Scavenger Enzyme Dcs-1 Controls Microrna Levels In Caenorhabditis Elegans, Gabriel Bosse, Stefan Ruegger, Maria Ow, Alejandro Vasquez-Rifo, Evelyne Rondeau, Victor Ambros, Helge Grosshans, Martin Simard

Victor R. Ambros

In metazoans, microRNAs play a critical role in the posttranscriptional regulation of genes required for cell proliferation and differentiation. MicroRNAs themselves are regulated by a multitude of mechanisms influencing their transcription and posttranscriptional maturation. However, there is only sparse knowledge on pathways regulating the mature, functional form of microRNA. Here, we uncover the implication of the decapping scavenger protein DCS-1 in the control of microRNA turnover. In Caenorhabditis elegans, mutations in dcs-1 increase the levels of functional microRNAs. We demonstrate that DCS-1 interacts with the exonuclease XRN-1 to promote microRNA degradation in an independent manner from its known decapping scavenger …


Developmental Decline In Neuronal Regeneration By The Progressive Change Of Two Intrinsic Timers, Yan Zou, Hui Chiu, Anna Zinovyeva, Victor Ambros, Chiou-Fen Chuang, Chieh Chang Oct 2015

Developmental Decline In Neuronal Regeneration By The Progressive Change Of Two Intrinsic Timers, Yan Zou, Hui Chiu, Anna Zinovyeva, Victor Ambros, Chiou-Fen Chuang, Chieh Chang

Victor R. Ambros

Like mammalian neurons, Caenorhabditis elegans neurons lose axon regeneration ability as they age, but it is not known why. Here, we report that let-7 contributes to a developmental decline in anterior ventral microtubule (AVM) axon regeneration. In older AVM axons, let-7 inhibits regeneration by down-regulating LIN-41, an important AVM axon regeneration-promoting factor. Whereas let-7 inhibits lin-41 expression in older neurons through the lin-41 3' untranslated region, lin-41 inhibits let-7 expression in younger neurons through Argonaute ALG-1. This reciprocal inhibition ensures that axon regeneration is inhibited only in older neurons. These findings show that a let-7-lin-41 regulatory circuit, which was previously …


The Evolution Of Our Thinking About Micrornas, Victor Ambros Oct 2015

The Evolution Of Our Thinking About Micrornas, Victor Ambros

Victor R. Ambros

Our appreciation of the significance of microRNAs to biology at large continues to be an evolving process.


Mutations In Conserved Residues Of The C. Elegans Microrna Argonaute Alg-1 Identify Separable Functions In Alg-1 Mirisc Loading And Target Repression, Anna Y. Zinovyeva, Samir Bouasker, Martin J. Simard, Christopher M. Hammell, Victor R. Ambros Oct 2015

Mutations In Conserved Residues Of The C. Elegans Microrna Argonaute Alg-1 Identify Separable Functions In Alg-1 Mirisc Loading And Target Repression, Anna Y. Zinovyeva, Samir Bouasker, Martin J. Simard, Christopher M. Hammell, Victor R. Ambros

Victor R. Ambros

microRNAs function in diverse developmental and physiological processes by regulating target gene expression at the post-transcriptional level. ALG-1 is one of two Caenorhabditis elegans Argonautes (ALG-1 and ALG-2) that together are essential for microRNA biogenesis and function. Here, we report the identification of novel antimorphic (anti) alleles of ALG-1 as suppressors of lin-28(lf) precocious developmental phenotypes. The alg-1(anti) mutations broadly impair the function of many microRNAs and cause dosage-dependent phenotypes that are more severe than the complete loss of ALG-1. ALG-1(anti) mutant proteins are competent for promoting Dicer cleavage of microRNA precursors and for associating with and stabilizing microRNAs. However, …


The Developmental Timing Regulator Hbl-1 Modulates The Dauer Formation Decision In Caenorhabditis Elegans, Xantha Karp, Victor Ambros Oct 2015

The Developmental Timing Regulator Hbl-1 Modulates The Dauer Formation Decision In Caenorhabditis Elegans, Xantha Karp, Victor Ambros

Victor R. Ambros

Animals developing in the wild encounter a range of environmental conditions, and so developmental mechanisms have evolved that can accommodate different environmental contingencies. Harsh environmental conditions cause Caenorhabditis elegans larvae to arrest as stress-resistant "dauer" larvae after the second larval stage (L2), thereby indefinitely postponing L3 cell fates. HBL-1 is a key transcriptional regulator of L2 vs. L3 cell fate. Through the analysis of genetic interactions between mutations of hbl-1 and of genes encoding regulators of dauer larva formation, we find that hbl-1 can also modulate the dauer formation decision in a complex manner. We propose that dynamic interactions between …


Dauer Larva Quiescence Alters The Circuitry Of Microrna Pathways Regulating Cell Fate Progression In C. Elegans, Xantha Karp, Victor Ambros Oct 2015

Dauer Larva Quiescence Alters The Circuitry Of Microrna Pathways Regulating Cell Fate Progression In C. Elegans, Xantha Karp, Victor Ambros

Victor R. Ambros

In C. elegans larvae, the execution of stage-specific developmental events is controlled by heterochronic genes, which include those encoding a set of transcription factors and the microRNAs that regulate the timing of their expression. Under adverse environmental conditions, developing larvae enter a stress-resistant, quiescent stage called 'dauer'. Dauer larvae are characterized by the arrest of all progenitor cell lineages at a stage equivalent to the end of the second larval stage (L2). If dauer larvae encounter conditions favorable for resumption of reproductive growth, they recover and complete development normally, indicating that post-dauer larvae possess mechanisms to accommodate an indefinite period …


Systematic Analysis Of Dynamic Mirna-Target Interactions During C. Elegans Development, Liang Zhang, Molly Hammell, Brian Kudlow, Victor Ambros, Min Han Oct 2015

Systematic Analysis Of Dynamic Mirna-Target Interactions During C. Elegans Development, Liang Zhang, Molly Hammell, Brian Kudlow, Victor Ambros, Min Han

Victor R. Ambros

Although microRNA (miRNA)-mediated functions have been implicated in many aspects of animal development, the majority of miRNA::mRNA regulatory interactions remain to be characterized experimentally. We used an AIN/GW182 protein immunoprecipitation approach to systematically analyze miRNA::mRNA interactions during C. elegans development. We characterized the composition of miRNAs in functional miRNA-induced silencing complexes (miRISCs) at each developmental stage and identified three sets of miRNAs with distinct stage-specificity of function. We then identified thousands of miRNA targets in each developmental stage, including a significant portion that is subject to differential miRNA regulation during development. By identifying thousands of miRNA family-mRNA pairs with temporally …


Prb/Cki Pathways At The Interface Of Cell Cycle And Development, Victor Ambros Oct 2015

Prb/Cki Pathways At The Interface Of Cell Cycle And Development, Victor Ambros

Victor R. Ambros

Comment on: The cyclin-dependent kinase inhibitors, cki-1 and cki-2, act in overlapping but distinct pathways to control cell-cycle quiescence during C. elegans development. Buck SH, et al. Cell Cycle 2009; 8:2613-20.


A Quantitative Rna Code For Mrna Target Selection By The Germline Fate Determinant Gld-1, Jane Wright, Dimos Gaidatzis, Mathias Senften, Brian Farley, Eric Westhof, Sean Ryder, Rafal Ciosk May 2015

A Quantitative Rna Code For Mrna Target Selection By The Germline Fate Determinant Gld-1, Jane Wright, Dimos Gaidatzis, Mathias Senften, Brian Farley, Eric Westhof, Sean Ryder, Rafal Ciosk

Sean P. Ryder

RNA-binding proteins (RBPs) are critical regulators of gene expression. To understand and predict the outcome of RBP-mediated regulation a comprehensive analysis of their interaction with RNA is necessary. The signal transduction and activation of RNA (STAR) family of RBPs includes developmental regulators and tumour suppressors such as Caenorhabditis elegans GLD-1, which is a key regulator of germ cell development. To obtain a comprehensive picture of GLD-1 interactions with the transcriptome, we identified GLD-1-associated mRNAs by RNA immunoprecipitation followed by microarray detection. Based on the computational analysis of these mRNAs we generated a predictive model, where GLD-1 association with mRNA is …


Fbf Represses The Cip/Kip Cell-Cycle Inhibitor Cki-2 To Promote Self-Renewal Of Germline Stem Cells In C. Elegans, Irene Kalchhauser, Brian Farley, Sandra Pauli, Sean Ryder, Rafal Ciosk May 2015

Fbf Represses The Cip/Kip Cell-Cycle Inhibitor Cki-2 To Promote Self-Renewal Of Germline Stem Cells In C. Elegans, Irene Kalchhauser, Brian Farley, Sandra Pauli, Sean Ryder, Rafal Ciosk

Sean P. Ryder

Although the decision between stem cell self-renewal and differentiation has been linked to cell-cycle modifications, our understanding of cell-cycle regulation in stem cells is very limited. Here, we report that FBF/Pumilio, a conserved RNA-binding protein, promotes self-renewal of germline stem cells by repressing CKI-2(Cip/Kip), a Cyclin E/Cdk2 inhibitor. We have previously shown that repression of CYE-1 (Cyclin E) by another RNA-binding protein, GLD-1/Quaking, promotes germ cell differentiation. Together, these findings suggest that a post-transcriptional regulatory circuit involving FBF and GLD-1 controls the self-renewal versus differentiation decision in the germline by promoting high CYE-1/CDK-2 activity in stem cells, and inhibiting CYE-1/CDK-2 …