Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

2015

Genetics and Genomics

Selected Works

Humans

Articles 1 - 5 of 5

Full-Text Articles in Life Sciences

Genetic And Acute Cpeb1 Depletion Ameliorate Fragile X Pathophysiology, Tsuyoshi Udagawa, Natalie Farny, Mira Jakovcevski, Hanoch Kaphzan, Juan Alarcon, Shobha Anilkumar, Maria Ivshina, Jessica Hurt, Kentaro Nagaoka, Vijayalaxmi Nalavadi, Lori Lorenz, Gary Bassell, Schahram Akbarian, Sumantra Chattarji, Eric Klann, Joel Richter Dec 2015

Genetic And Acute Cpeb1 Depletion Ameliorate Fragile X Pathophysiology, Tsuyoshi Udagawa, Natalie Farny, Mira Jakovcevski, Hanoch Kaphzan, Juan Alarcon, Shobha Anilkumar, Maria Ivshina, Jessica Hurt, Kentaro Nagaoka, Vijayalaxmi Nalavadi, Lori Lorenz, Gary Bassell, Schahram Akbarian, Sumantra Chattarji, Eric Klann, Joel Richter

Natalie G. Farny

Fragile X syndrome (FXS), the most common cause of inherited mental retardation and autism, is caused by transcriptional silencing of FMR1, which encodes the translational repressor fragile X mental retardation protein (FMRP). FMRP and cytoplasmic polyadenylation element-binding protein (CPEB), an activator of translation, are present in neuronal dendrites, are predicted to bind many of the same mRNAs and may mediate a translational homeostasis that, when imbalanced, results in FXS. Consistent with this possibility, Fmr1(-/y); Cpeb1(-/-) double-knockout mice displayed amelioration of biochemical, morphological, electrophysiological and behavioral phenotypes associated with FXS. Acute depletion of CPEB1 in the hippocampus of adult Fmr1(-/y) mice …


A Conserved Three-Nucleotide Core Motif Defines Musashi Rna Binding Specificity, Nancy Zearfoss, Laura Deveau, Carina Clingman, Eric Schmidt, Emily Johnson, Francesca Massi, Sean Ryder Sep 2015

A Conserved Three-Nucleotide Core Motif Defines Musashi Rna Binding Specificity, Nancy Zearfoss, Laura Deveau, Carina Clingman, Eric Schmidt, Emily Johnson, Francesca Massi, Sean Ryder

Sean P. Ryder

Musashi (MSI) family proteins control cell proliferation and differentiation in many biological systems. They are overexpressed in tumors of several origins, and their expression level correlates with poor prognosis. MSI proteins control gene expression by binding RNA and regulating its translation. They contain two RNA recognition motif (RRM) domains, which recognize a defined sequence element. The relative contribution of each nucleotide to the binding affinity and specificity is unknown. We analyzed the binding specificity of three MSI family RRM domains using a quantitative fluorescence anisotropy assay. We found that the core element driving recognition is the sequence UAG. Nucleotides outside …


Crosstalk Between Brca-Fanconi Anemia And Mismatch Repair Pathways Prevents Msh2-Dependent Aberrant Dna Damage Responses, Min Peng, Jenny X. Xie, Anna J. Ucher, Janet Stavnezer, Sharon B. Cantor Aug 2015

Crosstalk Between Brca-Fanconi Anemia And Mismatch Repair Pathways Prevents Msh2-Dependent Aberrant Dna Damage Responses, Min Peng, Jenny X. Xie, Anna J. Ucher, Janet Stavnezer, Sharon B. Cantor

Janet M. Stavnezer

Several proteins in the BRCA-Fanconi anemia (FA) pathway, such as FANCJ, BRCA1, and FANCD2, interact with mismatch repair (MMR) pathway factors, but the significance of this link remains unknown. Unlike the BRCA-FA pathway, the MMR pathway is not essential for cells to survive toxic DNA interstrand crosslinks (ICLs), although MMR proteins bind ICLs and other DNA structures that form at stalled replication forks. We hypothesized that MMR proteins corrupt ICL repair in cells that lack crosstalk between BRCA-FA and MMR pathways. Here, we show that ICL sensitivity of cells lacking the interaction between FANCJ and the MMR protein MLH1 is …


The Genetics Of Hepatitis C Virus Underlie Its Ability To Escape Humoral Immunity, Jay Kolls, Gyongyi Szabo Jun 2015

The Genetics Of Hepatitis C Virus Underlie Its Ability To Escape Humoral Immunity, Jay Kolls, Gyongyi Szabo

Gyongyi Szabo

Hepatitis C virus (HCV) is a leading cause of chronic liver disease, and efforts to develop therapeutic vaccine strategies have been limited by immune escape due to HCV variants that are resistant to current vaccines or HCV variants that rapidly acquire new resistance-conferring mutations. Recently, the crystal structure of the viral envelope protein E2 region was resolved as well as how E2 docks to the host CD81 protein; therefore, antibodies that block this interaction should prevent viral entry into host cells. In this issue of the JCI, Bailey and colleagues show that immune escape of HCV can occur by naturally …


Quaking Regulates Hnrnpa1 Expression Through Its 3' Utr In Oligodendrocyte Precursor Cells, Nancy Zearfoss, Carina Clingman, Brian Farley, Lisa Mccoig, Sean Ryder May 2015

Quaking Regulates Hnrnpa1 Expression Through Its 3' Utr In Oligodendrocyte Precursor Cells, Nancy Zearfoss, Carina Clingman, Brian Farley, Lisa Mccoig, Sean Ryder

Sean P. Ryder

In mice, Quaking (Qk) is required for myelin formation; in humans, it has been associated with psychiatric disease. QK regulates the stability, subcellular localization, and alternative splicing of several myelin-related transcripts, yet little is known about how QK governs these activities. Here, we show that QK enhances Hnrnpa1 mRNA stability by binding a conserved 3' UTR sequence with high affinity and specificity. A single nucleotide mutation in the binding site eliminates QK-dependent regulation, as does reduction of QK by RNAi. Analysis of exon expression across the transcriptome reveals that QK and hnRNP A1 regulate an overlapping subset of transcripts. Thus, …