Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

2015

Genetics and Genomics

Dartmouth Scholarship

Epistasis

Articles 1 - 2 of 2

Full-Text Articles in Life Sciences

Identifying Gene-Gene Interactions That Are Highly Associated With Body Mass Index Using Quantitative Multifactor Dimensionality Reduction (Qmdr), Rishika De, Shefali S. Verma, Fotios Drenos, Emily R. Holzinger Dec 2015

Identifying Gene-Gene Interactions That Are Highly Associated With Body Mass Index Using Quantitative Multifactor Dimensionality Reduction (Qmdr), Rishika De, Shefali S. Verma, Fotios Drenos, Emily R. Holzinger

Dartmouth Scholarship

Despite heritability estimates of 40–70% for obesity, less than 2% of its variation is explained by Body Mass Index (BMI) associated loci that have been identified so far. Epistasis, or gene-gene interactions are a plausible source to explain portions of the missing heritability of BMI. Using genotypic data from 18,686 individuals across five study cohorts – ARIC, CARDIA, FHS, CHS, MESA – we filtered SNPs (Single Nucleotide Polymorphisms) using two parallel approaches. SNPs were filtered either on the strength of their main effects of association with BMI, or on the number of knowledge sources supporting a specific SNP-SNP interaction in …


Yeast Integral Membrane Proteins Apq12, Brl1, And Brr6 Form A Complex Important For Regulation Of Membrane Homeostasis And Nuclear Pore Complex Biogenesis, Museer A. Lone, Aaron E. Atkinson, Christine A. Hodge, Stéphanie Cottier, Fernando Martínez-Montañés, Shelley Maithel, Laurent Mène-Saffrané, Cole Cole, Roger Schneiter Oct 2015

Yeast Integral Membrane Proteins Apq12, Brl1, And Brr6 Form A Complex Important For Regulation Of Membrane Homeostasis And Nuclear Pore Complex Biogenesis, Museer A. Lone, Aaron E. Atkinson, Christine A. Hodge, Stéphanie Cottier, Fernando Martínez-Montañés, Shelley Maithel, Laurent Mène-Saffrané, Cole Cole, Roger Schneiter

Dartmouth Scholarship

Proper functioning of intracellular membranes is critical for many cellular processes. A key feature of membranes is their ability to adapt to changes in environmental conditions by adjusting their composition so as to maintain constant biophysical proper- ties, including fluidity and flexibility. Similar changes in the biophysical properties of membranes likely occur when intracellular processes, such as vesicle formation and fusion, require dramatic changes in membrane curvature. Similar modifications must also be made when nuclear pore complexes (NPCs) are constructed within the existing nuclear membrane, as occurs during in- terphase in all eukaryotes. Here we report on the role of …