Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 9 of 9

Full-Text Articles in Life Sciences

Candida Albicans Ethanol Stimulates Pseudomonas Aeruginosa Wspr-Controlled Biofilm Formation As Part Of A Cyclic Relationship Involving Phenazines, Annie I. Chen, Emily F. Dolben, Chinweike Okegbe, Colleen E. Harty, Yuriy Golub, Sandy Thao, Dae Gon Ha, Sven D. Willger, George A. O'Toole, Caroline S. Harwood, Lars E. P Dietrich, Deborah A. Hogan Oct 2014

Candida Albicans Ethanol Stimulates Pseudomonas Aeruginosa Wspr-Controlled Biofilm Formation As Part Of A Cyclic Relationship Involving Phenazines, Annie I. Chen, Emily F. Dolben, Chinweike Okegbe, Colleen E. Harty, Yuriy Golub, Sandy Thao, Dae Gon Ha, Sven D. Willger, George A. O'Toole, Caroline S. Harwood, Lars E. P Dietrich, Deborah A. Hogan

Dartmouth Scholarship

In chronic infections, pathogens are often in the presence of other microbial species. For example, Pseudomonas aeruginosa is a common and detrimental lung pathogen in individuals with cystic fibrosis (CF) and co-infections with Candida albicans are common. Here, we show that P. aeruginosa biofilm formation and phenazine production were strongly influenced by ethanol produced by the fungus C. albicans. Ethanol stimulated phenotypes that are indicative of increased levels of cyclic- di-GMP (c-di-GMP), and levels of c-di-GMP were 2-fold higher in the presence of ethanol. Through a genetic screen, we found that the diguanylate cyclase WspR was required for ethanol …


The Exometabolome Of Clostridium Thermocellum Reveals Overflow Metabolism At High Cellulose Loading, Evert K. Holwerda, Philip G. Thorne, Daniel G. Olson, Daniel Amador-Noguez, Nancy L. Engle, Timothy J. Tschaplinski, Johannes P. Van Dijken, Lee R. Lynd Oct 2014

The Exometabolome Of Clostridium Thermocellum Reveals Overflow Metabolism At High Cellulose Loading, Evert K. Holwerda, Philip G. Thorne, Daniel G. Olson, Daniel Amador-Noguez, Nancy L. Engle, Timothy J. Tschaplinski, Johannes P. Van Dijken, Lee R. Lynd

Dartmouth Scholarship

BackgroundClostridium thermocellum is a model thermophilic organism for the production of biofuels from lignocellulosic substrates. The majority of publications studying the physiology of this organism use substrate concentrations of ≤10 g/L. However, industrially relevant concentrations of substrate start at 100 g/L carbohydrate, which corresponds to approximately 150 g/L solids. To gain insight into the physiology of fermentation of high substrate concentrations, we studied the growth on, and utilization of high concentrations of crystalline cellulose varying from 50 to 100 g/L by C. thermocellum. .


Microbial Diversity Of A Mediterranean Soil And Its Changes After Biotransformed Dry Olive Residue Amendment, José A. Siles, Caio T.C.C Rachid, Inmaculada Sampedro, Inmaculada García-Romera, James M. Tiedje Jul 2014

Microbial Diversity Of A Mediterranean Soil And Its Changes After Biotransformed Dry Olive Residue Amendment, José A. Siles, Caio T.C.C Rachid, Inmaculada Sampedro, Inmaculada García-Romera, James M. Tiedje

Dartmouth Scholarship

The Mediterranean basin has been identified as a biodiversity hotspot, about whose soil microbial diversity little is known. Intensive land use and aggressive management practices are degrading the soil, with a consequent loss of fertility. The use of organic amendments such as dry olive residue (DOR), a waste produced by a two-phase olive-oil extraction system, has been proposed as an effective way to improve soil properties. However, before its application to soil, DOR needs a pre-treatment, such as by a ligninolytic fungal transformation, e.g. Coriolopsis floccosa. The present study aimed to describe the bacterial and fungal diversity in a …


Intrinsic Innate Immunity Fails To Control Herpes Simplex Virus And Vesicular Stomatitis Virus Replication In Sensory Neurons And Fibroblasts, Pamela C. Rosato, David A. Leib Jun 2014

Intrinsic Innate Immunity Fails To Control Herpes Simplex Virus And Vesicular Stomatitis Virus Replication In Sensory Neurons And Fibroblasts, Pamela C. Rosato, David A. Leib

Dartmouth Scholarship

Herpes simplex virus 1 (HSV-1) establishes lifelong latent infections in the sensory neurons of the trigeminal ganglia (TG), wherein it retains the capacity to reactivate. The interferon (IFN)-driven antiviral response is critical for the control of HSV-1 acute replication. We therefore sought to further investigate this response in TG neurons cultured from adult mice deficient in a variety of IFN signaling components. Parallel experiments were also performed in fibroblasts isolated concurrently. We showed that HSV-1 replication was comparable in wild-type (WT) and IFN signaling-deficient neurons and fibroblasts. Unexpectedly, a similar pattern was observed for the IFN-sensitive vesicular stomatitis virus (VSV). …


Host Species Restriction Of Middle East Respiratory Syndrome Coronavirus Through Its Receptor, Dipeptidyl Peptidase 4, Neeltje Van Doremalen, Kerri L. Miazgowicz, Shauna Milne-Price, Trenton Bushmaker, Shelly Robertson, Dana Scott, Joerg Kinne, Jason S. Mclellan Jun 2014

Host Species Restriction Of Middle East Respiratory Syndrome Coronavirus Through Its Receptor, Dipeptidyl Peptidase 4, Neeltje Van Doremalen, Kerri L. Miazgowicz, Shauna Milne-Price, Trenton Bushmaker, Shelly Robertson, Dana Scott, Joerg Kinne, Jason S. Mclellan

Dartmouth Scholarship

Middle East respiratory syndrome coronavirus (MERS-CoV) emerged in 2012. Recently, the MERS-CoV receptor dipeptidyl peptidase 4 (DPP4) was identified and the specific interaction of the receptor-binding domain (RBD) of MERS-CoV spike protein and DPP4 was determined by crystallography. Animal studies identified rhesus macaques but not hamsters, ferrets, or mice to be susceptible for MERS-CoV. Here, we investigated the role of DPP4 in this observed species tropism. Cell lines of human and nonhuman primate origin were permissive of MERS-CoV, whereas hamster, ferret, or mouse cell lines were not, despite the presence of DPP4. Expression of human DPP4 in nonsusceptible BHK and …


Structural Features Of The Pseudomonas Fluorescens Biofilm Adhesin Lapa Required For Lapg-Dependent Cleavage, Biofilm Formation, And Cell Surface Localization, Chelsea D. Boyd, T. Jarrod Smith, Sofiane El-Kirat-Chatel, Peter D. Newell, Yves F. Dufrêne, George A. O'Toole May 2014

Structural Features Of The Pseudomonas Fluorescens Biofilm Adhesin Lapa Required For Lapg-Dependent Cleavage, Biofilm Formation, And Cell Surface Localization, Chelsea D. Boyd, T. Jarrod Smith, Sofiane El-Kirat-Chatel, Peter D. Newell, Yves F. Dufrêne, George A. O'Toole

Dartmouth Scholarship

The localization of the LapA protein to the cell surface is a key step required by Pseudomonas fluorescens Pf0-1 to irreversibly attach to a surface and form a biofilm. LapA is a member of a diverse family of predicted bacterial adhesins, and although lacking a high degree of sequence similarity, family members do share common predicted domains. Here, using mutational analysis, we determine the significance of each domain feature of LapA in relation to its export and localization to the cell surface and function in biofilm formation. Our previous work showed that the N terminus of LapA is required for …


Deletion Mutant Library For Investigation Of Functional Outputs Of Cyclic Diguanylate Metabolism In Pseudomonas Aeruginosa Pa14, Dae-Gon Ha, Megan E. Richman, George A. O'Toole Mar 2014

Deletion Mutant Library For Investigation Of Functional Outputs Of Cyclic Diguanylate Metabolism In Pseudomonas Aeruginosa Pa14, Dae-Gon Ha, Megan E. Richman, George A. O'Toole

Dartmouth Scholarship

We constructed a library of in-frame deletion mutants targeting each gene in Pseudomonas aeruginosa PA14 predicted to participate in cyclic di-GMP (c-di-GMP) metabolism (biosynthesis or degradation) to provide a toolkit to assist investigators studying c-di-GMP-mediated regulation by this microbe. We present phenotypic assessments of each mutant, including biofilm formation, exopolysaccharide (EPS) production, swimming motility, swarming motility, and twitch motility, as a means to initially characterize these mutants and to demonstrate the potential utility of this library.


The Wnt/Planar Cell Polarity Pathway Component Vangl2 Induces Synapse Formation Through Direct Control Of N-Cadherin, Tadahiro Nagaoka, Riuko Ohashi, Ayumu Inutsuka, Seiko Sakai, Nobuyoshi Fujisawa, Minesuke Yokoyama, Yina H. Huang, Michihiro Igarashi, Masashi Kishi Mar 2014

The Wnt/Planar Cell Polarity Pathway Component Vangl2 Induces Synapse Formation Through Direct Control Of N-Cadherin, Tadahiro Nagaoka, Riuko Ohashi, Ayumu Inutsuka, Seiko Sakai, Nobuyoshi Fujisawa, Minesuke Yokoyama, Yina H. Huang, Michihiro Igarashi, Masashi Kishi

Dartmouth Scholarship

Although regulators of the Wnt/planar cell polarity (PCP) pathway are widely expressed in vertebrate nervous systems, their roles at synapses are unknown. Here, we show that Vangl2 is a postsynaptic factor crucial for synaptogenesis and that it coprecipitates with N-cadherin and PSD-95 from synapse-rich brain extracts. Vangl2 directly binds N-cadherin and enhances its internalization in a Rab5-dependent manner. This physical and functional interaction is suppressed by β-catenin, which binds the same intracellular region of N-cadherin as Vangl2. In hippocampal neurons expressing reduced Vangl2 levels, dendritic spine formation as well as synaptic marker clustering is significantly impaired. Furthermore, Prickle2, another postsynaptic …


Gene And Protein Sequence Optimization For High-Level Production Of Fully Active And Aglycosylated Lysostaphin In Pichia Pastoris, Hongliang Zhao, Kristina Blazanovic, Yoonjoo Choi, Chris Bailey-Kellogg, Karl E. Griswold Feb 2014

Gene And Protein Sequence Optimization For High-Level Production Of Fully Active And Aglycosylated Lysostaphin In Pichia Pastoris, Hongliang Zhao, Kristina Blazanovic, Yoonjoo Choi, Chris Bailey-Kellogg, Karl E. Griswold

Dartmouth Scholarship

Lysostaphin represents a promising therapeutic agent for the treatment of staphylococcal infections, in particular those of methicillin-resistant Staphylococcus aureus (MRSA). However, conventional expression systems for the enzyme suffer from various limitations, and there remains a need for an efficient and cost-effective production process to facilitate clinical translation and the development of nonmedical applications. While Pichia pastoris is widely used for high-level production of recombinant proteins, there are two major barriers to the production of lysostaphin in this industrially relevant host: lack of expression from the wild-type lysostaphin gene and aberrant glycosylation of the wild-type protein sequence. The first barrier can …