Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Life Sciences

Profile Of The Unfolded Protein Response In C. Elegans Depleted Of The Translational Chaperone, Nac., Caylin S. Murray Dec 2014

Profile Of The Unfolded Protein Response In C. Elegans Depleted Of The Translational Chaperone, Nac., Caylin S. Murray

Masters Theses, 2010-2019

The function of a protein is a direct consequence of its final structure, which is achieved by protein-folding processes that generate a tertiary state through the juxtaposition of locally formed secondary structures. Because all cells need functional proteins to survive, each contains robust and redundant mechanisms that regulate the folding of newly forming proteins, and the refolding of misfolded proteins that are often generated during stress. Essential to these mechanisms, chaperones are proteins that aid in protein folding of nascent and misfolding protein without being incorporated in the final structure. One chaperone complex, the nascent polypeptide-associated complex (NAC), aids in …


Understanding The Transcriptional Regulation Of Secondary Cell Wall Biosynthesis In The Model Grass Brachypodium Distachyon, Pubudu Handakumbura Nov 2014

Understanding The Transcriptional Regulation Of Secondary Cell Wall Biosynthesis In The Model Grass Brachypodium Distachyon, Pubudu Handakumbura

Doctoral Dissertations

Secondary cell wall synthesis occurs in specialized cell types following completion of cell enlargement. By virtue of mechanical strength provided by a wall thickened with cellulose, hemicelluloses, and lignin, these cells can function as water-conducting vessels and provide structural support. Several transcription factor families regulate genes encoding wall synthesis enzymes. Certain NAC and MYB proteins directly bind upstream of structural genes and other transcription factors. The most detailed model of this regulatory network is established predominantly for a eudicot, Arabidopsis thaliana. In grasses, both the patterning and the composition of secondary cell walls are distinct from that of eudicots. …