Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Life Sciences

Advanced Molecular Biologic Techniques In Toxicologic Disease, Jeanine Ward, Gyongyi Szabo, David Mcmanus, Edward Boyer Oct 2012

Advanced Molecular Biologic Techniques In Toxicologic Disease, Jeanine Ward, Gyongyi Szabo, David Mcmanus, Edward Boyer

Gyongyi Szabo

The advancement of molecular biologic techniques and their capabilities to answer questions pertaining to mechanisms of pathophysiologic events have greatly expanded over the past few years. In particular, these opportunities have provided researchers and clinicians alike the framework from with which to answer clinical questions not amenable for elucidation using previous, more antiquated methods. Utilizing extremely small molecules, namely microRNA, DNA, protein, and nanoparticles, we discuss the background and utility of these approaches to the progressive, practicing physician. Finally, we consider the application of these tools employed as future bedside point of care tests, aiding in the ultimate goal of …


Plasma Microrna Profiles Distinguish Lethal Injury In Acetaminophen Toxicity: A Research Study, Jeanine Ward, Shashi Bala, Jan Petrasek, Gyongyi Szabo Oct 2012

Plasma Microrna Profiles Distinguish Lethal Injury In Acetaminophen Toxicity: A Research Study, Jeanine Ward, Shashi Bala, Jan Petrasek, Gyongyi Szabo

Gyongyi Szabo

AIM: To investigate plasma microRNA (miRNA) profiles indicative of hepatotoxicity in the setting of lethal acetaminophen (APAP) toxicity in mice. METHODS: Using plasma from APAP poisoned mice, either lethally (500 mg/kg) or sublethally (150 mg/kg) dosed, we screened commercially available murine microRNA libraries (SABiosciences, Qiagen Sciences, MD) to evaluate for unique miRNA profiles between these two dosing parameters. RESULTS: We distinguished numerous, unique plasma miRNAs both up- and downregulated in lethally compared to sublethally dosed mice. Of note, many of the greatest up- and downregulated miRNAs, namely 574-5 p, 466 g, 466 f-3p, 375, 29 c, and 148 a, have …