Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

2011

Genetics

Engineering

Articles 1 - 2 of 2

Full-Text Articles in Life Sciences

High Ethanol Titers From Cellulose By Using Metabolically Engineered Thermophilic, Anaerobic Microbes, D. Aaron Argyros, Shital A. Tripathi, Trisha F. Barrett, Stephen R. Rogers, Lawrence F. Feinberg, Daniel G. Olson, Justin M. Foden, Bethany B. Miller, Lee R. Lynd, David A. Hogsett, Nicky C. Caiazza Sep 2011

High Ethanol Titers From Cellulose By Using Metabolically Engineered Thermophilic, Anaerobic Microbes, D. Aaron Argyros, Shital A. Tripathi, Trisha F. Barrett, Stephen R. Rogers, Lawrence F. Feinberg, Daniel G. Olson, Justin M. Foden, Bethany B. Miller, Lee R. Lynd, David A. Hogsett, Nicky C. Caiazza

Dartmouth Scholarship

This work describes novel genetic tools for use in Clostridium thermocellum that allow creation of unmarked mutations while using a replicating plasmid. The strategy employed counter-selections developed from the native C. thermocellum hpt gene and the Thermoanaerobacterium saccharolyticum tdk gene and was used to delete the genes for both lactate dehydrogenase (Ldh) and phosphotransacetylase (Pta). The Δldh Δpta mutant was evolved for 2,000 h, resulting in a stable strain with 40:1 ethanol selectivity and a 4.2-fold increase in ethanol yield over the wild-type strain. Ethanol production from cellulose was investigated with an engineered coculture of organic acid-deficient engineered strains of …


Mutant Alcohol Dehydrogenase Leads To Improved Ethanol Tolerance In Clostridium Thermocellum, Steven D. Brown, Adam M. Guss, Tatiana V. Karpinets, Jerry M. Parks Aug 2011

Mutant Alcohol Dehydrogenase Leads To Improved Ethanol Tolerance In Clostridium Thermocellum, Steven D. Brown, Adam M. Guss, Tatiana V. Karpinets, Jerry M. Parks

Dartmouth Scholarship

Clostridium thermocellum is a thermophilic, obligately anaerobic, Gram-positive bacterium that is a candidate microorganism for converting cellulosic biomass into ethanol through consolidated bioprocessing. Ethanol intolerance is an important metric in terms of process economics, and tolerance has often been described as a complex and likely multigenic trait for which complex gene interactions come into play. Here, we resequence the genome of an ethanol-tolerant mutant, show that the tolerant phenotype is primarily due to a mutated bifunctional acetaldehyde-CoA/alcohol dehydrogenase gene (adhE), hypothesize based on structural analysis that cofactor specificity may be affected, and confirm this hypothesis using enzyme assays. …