Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

2011

Animals

Molecular, Cellular, and Tissue Engineering

Articles 1 - 2 of 2

Full-Text Articles in Life Sciences

Differential Il-21 Signaling In Apcs Leads To Disparate Th17 Differentiation In Diabetes-Susceptible Nod And Diabetes-Resistant Nod.Idd3 Mice., Sue M. Liu, David H. Lee, Jenna M. Sullivan, Denise Chung, Anneli Jäger, Bennett O V. Shum, Nora E. Sarvetnick, Ana C. Anderson, Vijay K. Kuchroo Nov 2011

Differential Il-21 Signaling In Apcs Leads To Disparate Th17 Differentiation In Diabetes-Susceptible Nod And Diabetes-Resistant Nod.Idd3 Mice., Sue M. Liu, David H. Lee, Jenna M. Sullivan, Denise Chung, Anneli Jäger, Bennett O V. Shum, Nora E. Sarvetnick, Ana C. Anderson, Vijay K. Kuchroo

Journal Articles: Regenerative Medicine

Type 1 diabetes (T1D) is an autoimmune disease that shows familial aggregation in humans and likely has genetic determinants. Disease linkage studies have revealed many susceptibility loci for T1D in mice and humans. The mouse T1D susceptibility locus insulin-dependent diabetes susceptibility 3 (Idd3), which has a homologous genetic interval in humans, encodes cytokine genes Il2 and Il21 and regulates diabetes and other autoimmune diseases; however, the cellular and molecular mechanisms of this regulation are still being elucidated. Here we show that T cells from NOD mice produce more Il21 and less Il2 and exhibit enhanced Th17 cell generation compared with …


The Incidence Of Type-1 Diabetes In Nod Mice Is Modulated By Restricted Flora Not Germ-Free Conditions., Cecile King, Nora Sarvetnick Jan 2011

The Incidence Of Type-1 Diabetes In Nod Mice Is Modulated By Restricted Flora Not Germ-Free Conditions., Cecile King, Nora Sarvetnick

Journal Articles: Regenerative Medicine

In the NOD mouse, the incidence of type-1 diabetes is thought to be influenced by the degree of cleanliness of the mouse colony. Studies collectively demonstrate that exposure to bacterial antigen or infection in the neonatal period prevents diabetes [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], supporting the notion that immunostimulation can benefit the maturation of the postnatal immune system [11]. A widely accepted extrapolation from this data has been the notion that NOD mice maintained under germ-free conditions have an increased incidence of diabetes. However, evidence supporting this influential concept is surprisingly limited [12]. In this …