Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

2007

Faculty Publications

Genomics

Articles 1 - 3 of 3

Full-Text Articles in Life Sciences

Are There Rearrangement Hotspots In The Human Genome?, Max A. Alekseyev, Pavel A. Pevzner Nov 2007

Are There Rearrangement Hotspots In The Human Genome?, Max A. Alekseyev, Pavel A. Pevzner

Faculty Publications

In a landmark paper, Nadeau and Taylor [18] formulated the random breakage model (RBM) of chromosome evolution that postulates that there are no rearrangement hotspots in the human genome. In the next two decades, numerous studies with progressively increasing levels of resolution made RBM the de facto theory of chromosome evolution. Despite the fact that RBM had prophetic prediction power, it was recently refuted by Pevzner and Tesler [4], who introduced the fragile breakage model (FBM), postulating that the human genome is a mosaic of solid regions (with low propensity for rearrangements) and fragile regions (rearrangement hotspots). However, the rebuttal …


Whole Genome Duplications And Contracted Breakpoint Graphs, Max A. Alekseyev, Pavel A. Pevzner Jan 2007

Whole Genome Duplications And Contracted Breakpoint Graphs, Max A. Alekseyev, Pavel A. Pevzner

Faculty Publications

The genome halving problem, motivated by the whole genome duplication events in molecular evolution, was solved by El-Mabrouk and Sankoff in the pioneering paper [SIAM J. Comput., 32 (2003), pp. 754–792]. The El-Mabrouk–Sankoff algorithm is rather complex, inspiring a quest for a simpler solution. An alternative approach to the genome halving problem based on the notion of the contracted breakpoint graph was recently proposed in [M. A. Alekseyev and P. A. Pevzner, IEEE/ACM Trans. Comput. Biol. Bioinformatics, 4 (2007), pp. 98–107]. This new technique reveals that while the El-Mabrouk–Sankoff result is correct in most cases, it does not hold in …


Colored De Bruijn Graphs And The Genome Halving Problem, Max A. Alekseyev, Pavel A. Pevzner Jan 2007

Colored De Bruijn Graphs And The Genome Halving Problem, Max A. Alekseyev, Pavel A. Pevzner

Faculty Publications

Breakpoint graph analysis is a key algorithmic technique in studies of genome rearrangements. However, breakpoint graphs are defined only for genomes without duplicated genes, thus limiting their applications in rearrangement analysis. We discuss a connection between the breakpoint graphs and de Bruijn graphs that leads to a generalization of the notion of breakpoint graph for genomes with duplicated genes. We further use the generalized breakpoint graphs to study the Genome Halving Problem (first introduced and solved by Nadia El-Mabrouk and David Sankoff). The El-Mabrouk-Sankoff algorithm is rather complex, and, in this paper, we present an alternative approach that is based …