Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Life Sciences

Xylan Metabolism By Caulobacter Crescentus, Viet Bui Jan 2019

Xylan Metabolism By Caulobacter Crescentus, Viet Bui

Masters Theses

Bacteria present unique opportunities to explore the molecular mechanisms of nutrient acquisition processes at single cell level under various experimental conditions. Caulobacter crescentus is a gram-negative oligotrophic environmental bacterium with adaptive physiological responses, such as slow growth or complete arrest of cell cycle, presence of sessile and motile progenies with the sessile cells growing stalk to enhance nutrient uptake for growth in low-nutrient conditions. Details of plant polysaccharide-derived carbon compound, such as cellobiose, maltose, and xylose utilization by C. crescentus can be found but molecular details or mechanisms of polysaccharide utilization, such as xylan, has not been reported. Database analyses …


Evolutionary Convergence Of The Caffeine Biosynthetic Pathway In Chocolate Followed Duplication Of A Constrained Ancestral Enzyme, Andrew J. O'Donnell Jun 2015

Evolutionary Convergence Of The Caffeine Biosynthetic Pathway In Chocolate Followed Duplication Of A Constrained Ancestral Enzyme, Andrew J. O'Donnell

Masters Theses

Caffeine biosynthesis is widely distributed in flowering plants and requires three consecutive methylation steps of xanthine alkaloids. Genes that have previously been reported to participate in the multi-step pathway in Coffea sp. (coffee) and Camellia sinensis (tea) encode members of the SABATH family of methyltransferases. Two genes highly expressed in fruits of Theobroma cacao (cacao) are orthologous to the caffeine genes in tea and appear to have diversified following gene duplication. Biochemical characterization of the enzymes (XMTs) encoded by these genes strongly suggest an unprecedented major pathway to theobromine, a precursor to caffeine. These findings imply that caffeine biosynthesis evolved …