Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Life Sciences

Aortic Pressure And Heart Rate In The Lobster Homarus Americanus Are Modulated By Mechanical Feedback And Neuropeptides, Grace Marie Hambelton Jan 2021

Aortic Pressure And Heart Rate In The Lobster Homarus Americanus Are Modulated By Mechanical Feedback And Neuropeptides, Grace Marie Hambelton

Honors Projects

Baroreceptors are stretch receptors located in the aorta of mammals; in response to increased afterload, they elicit a decrease in heart rate, creating a negative feedback loop that lowers blood pressure. Although lobsters (Homarus americanus) do not have baroreceptors like mammals, closely related land crabs have been shown to have baroreceptor-like responses. Heart contraction is also regulated by the Frank-Starling response, where increasing stretch or preload increases the contractile force of the heart. In addition to these types of biomechanical modulations, lobsters use a central pattern generator, the cardiac ganglion, to maintain synchronicity of the heartbeat. The heart …


Semaphorin-Induced Plasticity In The Nervous System Of The Cricket, Gryllus Bimaculatus, Alicia G. Edwards Jan 2021

Semaphorin-Induced Plasticity In The Nervous System Of The Cricket, Gryllus Bimaculatus, Alicia G. Edwards

Honors Projects

The adult auditory system of the cricket, Gryllus bimaculatus, exhibits a rare example of neuronal plasticity. Upon deafferentation, we observe medial dendrites that normally respect the midline of the PTG in the central nervous system sprouting across the boundary and forming synaptic connections with the contralateral auditory afferents. The Horch Lab has investigated key molecular factors that might play a causal role in this paradigm. Specifically, the protein Sema1a.2 comes from a guidance molecule family and has a role in developmental neuronal plasticity in other organisms. In this study, I explored the role of Sema1a.2 in the neuronal plasticity of …