Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Life Sciences

Layer-By-Layer Self -Assembly For Enzyme And Dna Encapsulation And Delivery, Amish Patel Oct 2004

Layer-By-Layer Self -Assembly For Enzyme And Dna Encapsulation And Delivery, Amish Patel

Doctoral Dissertations

Thin wall microcapsules were formed via Layer-by-Layer Self-Assembly of alternate adsorption of oppositely charged polyelectrolyte on microcores. After the core dissolution, empty polymeric shells with 20–25 nm thick walls were obtained. These microcapsules were loaded with Myoglobin, Hemoglobin and Glucose Oxidase by opening capsule pores at low pH and closing them at higher pH. The native structure of the enzyme was not affected due to different treatments. Biocompatible nanoshells were also prepared for encasing DNA. Using the same Layer-by-Layer Self-Assembly approach nanoparticle were constructed containing DNA as one of the layers. The nanoparticles of different architecture were used to deliver …


A High -Order Finite Difference Method For Solving Bioheat Transfer Equations In Three-Dimensional Triple -Layered Skin Structure, Haofeng Yu Jul 2004

A High -Order Finite Difference Method For Solving Bioheat Transfer Equations In Three-Dimensional Triple -Layered Skin Structure, Haofeng Yu

Doctoral Dissertations

Investigations on instantaneous skin burns are useful for an accurate assessment of burn-evaluation and for establishing thermal protections for various purposes. Meanwhile, hyperthermia with radiation is important in the treatment of cancer, and it is essential for developers and users of hyperthermia systems to predict, and interpret correctly the biomass thermal and vascular response to heating. In this dissertation, we employ the well-known Pennes' bioheat transfer equation to predict the degree of skin burn and the temperature distribution in hyperthermia cancer treatment.

A fourth-order compact finite difference scheme is developed to solve Pennes' bioheat transfer equation in a three-dimensional single …


Fabrication, Characterization, And Chemical Sensing Of Silicon Dioxide Microcantilevers, Yanjun Tang Apr 2004

Fabrication, Characterization, And Chemical Sensing Of Silicon Dioxide Microcantilevers, Yanjun Tang

Doctoral Dissertations

The objective of this work is to design and fabricate an advanced silicon dioxide microcantilever sensor and to investigate chemical and biological sensing by microtechnology.

Microcantilever sensor technology has many advantages including fast response time, lower cost of fabrication, the possibility of sensor arrays with small overall dimensions, the ability to explore microenvironments, and improved portability for field applications. For all of these advantages, microcantilever chemical and biological sensors have drawn more and more attention.

So far, all other microcantilevers were designed and fabricated for AFM applications. We developed a novel SiO2 microcantilever especially for chemical and biological sensor applications. …