Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Life Sciences

The Gene Expression Patterns Of Phanerochaete Chrysosporium And Trametes Versicolor On Diverse Lignocellulosic Feedstocks, Noor Osama Alabbasi Jan 2021

The Gene Expression Patterns Of Phanerochaete Chrysosporium And Trametes Versicolor On Diverse Lignocellulosic Feedstocks, Noor Osama Alabbasi

Masters Theses

Plant biomass is considered to be an important future starting material for fuels and chemicals, thereby decreasing our reliance on fossil fuels. While direct combustion continues to be a source of fuel, the generation of liquid fuels from plant biomass for transportation has proven to be challenging. Among the limiting factors for conversion of this material to biofuels is the recalcitrant nature of lignocellulose, the primary component of non-starch plant biomass. A strategy to overcome this dilemma is to directly or indirectly use the enzymes from white-rot fungi, which have evolved a unique ability to deconstruct lignocellulose. However, the biochemical …


The Transcriptome Response Of The White-Rot Fungus Trametes Versicolor To Wild-Type And Lignin-Modified Hybrid Poplar, Anbarah Alzabaidi Jan 2020

The Transcriptome Response Of The White-Rot Fungus Trametes Versicolor To Wild-Type And Lignin-Modified Hybrid Poplar, Anbarah Alzabaidi

Masters Theses

Plant biomass is a renewable and sustainable feedstock for biofuel production that can reduce societal dependence on fossil fuels. However, the production of liquid biofuels from the non-starch (i.e. lignocellulosic) material through fermentation technology is limited due to the complexity of the cell wall structure. This necessitates the use of chemical, thermal, and/or mechanical pretreatment technologies, which adds significant capital, operational, and environmental costs. Biological pretreatment strategies have the potential to mitigate these expenses by harnessing the innate ability of specialized bacteria and fungi to deconstruct lignocellulose. White-rot fungi (e.g. Trametes versicolor) have been shown to be …