Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Life Sciences

Structural Basis For Mutation-Induced Destabilization Of Profilin 1 In Als, Sivakumar Boopathy, Tania Silvas, Maeve Tischbein, Silvia Jansen, Shivender Shandilya, Jill Zitzewitz, John Landers, Bruce Goode, Celia Schiffer, Daryl Bosco Jan 2016

Structural Basis For Mutation-Induced Destabilization Of Profilin 1 In Als, Sivakumar Boopathy, Tania Silvas, Maeve Tischbein, Silvia Jansen, Shivender Shandilya, Jill Zitzewitz, John Landers, Bruce Goode, Celia Schiffer, Daryl Bosco

Celia A. Schiffer

Mutations in profilin 1 (PFN1) are associated with amyotrophic lateral sclerosis (ALS); however, the pathological mechanism of PFN1 in this fatal disease is unknown. We demonstrate that ALS-linked mutations severely destabilize the native conformation of PFN1 in vitro and cause accelerated turnover of the PFN1 protein in cells. This mutation-induced destabilization can account for the high propensity of ALS-linked variants to aggregate and also provides rationale for their reported loss-of-function phenotypes in cell-based assays. The source of this destabilization is illuminated by the X-ray crystal structures of several PFN1 proteins, revealing an expanded cavity near the protein core of the …


Positive Selection Drives Preferred Segment Combinations During Influenza Virus Reassortment, Konstantin Zeldovich, Ping Liu, Nicholas Renzette, Matthieu Foll, Serena Pham, Sergey Venev, Glen Gallagher, Daniel Bolon, Evelyn Kurt-Jones, Jeffrey Jensen, Daniel Caffrey, Celia Schiffer, Timothy Kowalik, Jennifer Wang, Robert Finberg Jun 2015

Positive Selection Drives Preferred Segment Combinations During Influenza Virus Reassortment, Konstantin Zeldovich, Ping Liu, Nicholas Renzette, Matthieu Foll, Serena Pham, Sergey Venev, Glen Gallagher, Daniel Bolon, Evelyn Kurt-Jones, Jeffrey Jensen, Daniel Caffrey, Celia Schiffer, Timothy Kowalik, Jennifer Wang, Robert Finberg

Celia A. Schiffer

Influenza A virus (IAV) has a segmented genome that allows for the exchange of genome segments between different strains. This reassortment accelerates evolution by breaking linkage, helping IAV cross species barriers to potentially create highly virulent strains. Challenges associated with monitoring the process of reassortment in molecular detail have limited our understanding of its evolutionary implications. We applied a novel deep sequencing approach with quantitative analysis to assess the in vitro temporal evolution of genomic reassortment in IAV. The combination of H1N1 and H3N2 strains reproducibly generated a new H1N2 strain with the hemagglutinin and nucleoprotein segments originating from H1N1 …


Influenza Virus Drug Resistance: A Time-Sampled Population Genetics Perspective, Matthieu Foll, Yu Poh, Nicholas Renzette, Anna Admetlla, Claudia Bank, Hyunjin Shim, Anna Malaspinas, Gregory Ewing, Ping Liu, Daniel Wegmann, Daniel Caffrey, Konstantin Zeldovich, Daniel Bolon, Jennifer Wang, Timothy Kowalik, Celia Schiffer, Robert Finberg, Jeffrey Jensen Jan 2015

Influenza Virus Drug Resistance: A Time-Sampled Population Genetics Perspective, Matthieu Foll, Yu Poh, Nicholas Renzette, Anna Admetlla, Claudia Bank, Hyunjin Shim, Anna Malaspinas, Gregory Ewing, Ping Liu, Daniel Wegmann, Daniel Caffrey, Konstantin Zeldovich, Daniel Bolon, Jennifer Wang, Timothy Kowalik, Celia Schiffer, Robert Finberg, Jeffrey Jensen

Celia A. Schiffer

The challenge of distinguishing genetic drift from selection remains a central focus of population genetics. Time-sampled data may provide a powerful tool for distinguishing these processes, and we here propose approximate Bayesian, maximum likelihood, and analytical methods for the inference of demography and selection from time course data. Utilizing these novel statistical and computational tools, we evaluate whole-genome datasets of an influenza A H1N1 strain in the presence and absence of oseltamivir (an inhibitor of neuraminidase) collected at thirteen time points. Results reveal a striking consistency amongst the three estimation procedures developed, showing strongly increased selection pressure in the presence …


Exploring The Role Of The Solvent In The Denaturation Of A Protein: A Molecular Dynamics Study Of The Dna Binding Domain Of The 434 Repressor, Celia Schiffer, Volker Dötsch, Kurt Wuthrich, Wilfred Van Gunsteren Nov 2011

Exploring The Role Of The Solvent In The Denaturation Of A Protein: A Molecular Dynamics Study Of The Dna Binding Domain Of The 434 Repressor, Celia Schiffer, Volker Dötsch, Kurt Wuthrich, Wilfred Van Gunsteren

Celia A. Schiffer

Molecular dynamics simulations of the DNA binding domain of 434 repressor are presented which aim at unraveling the role of solvent in protein denaturation. Four altered solvent models, each mimicking various possible aspects of the addition of a denaturant to the aqueous solvent, were used in the simulations to analyze their effects on the stability of the protein. The solvent was altered by selectively changing the Coulombic interaction between water and protein atoms and between different water molecules. The use of a modified solvent model has the advantage of mimicking the presence of denaturant without having denaturant molecules present in …