Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Selected Works

Ecology and Evolutionary Biology

Evapotranspiration

Articles 1 - 10 of 10

Full-Text Articles in Life Sciences

Disentangling Climatic And Anthropogenic Controls On Global Terrestrial Evapotranspiration Trends, Jiafu Mao, Wenting Fu, Xiaoying Shi, Daniel M. Ricciuto, Joshua B. Fisher, Robert E. Dickinson, Yaxing Wei, Willis Shem, Shilong Piao, Kaicun Wang, Christopher R. Schwalm, Hanqin Tian, Mingquan Mu, Altaf Arain, Philippe Ciais, Robert Cook, Yongdiu Dai, Daniel Hayes, Forrest M. Hoffman, Maoyi Huang, Suo Huang, Deborah N. Huntzinger, Akihiko Ito, Atul Jain, Anthony W. King, Huimin Lei, Chaoqun (Crystal) Lu, Huimin Lei, Anna M. Michalak, Changhui Peng, Shushi Peng, Benjamin Poulter, Kevin Schaefer, Elshin Jafarov, Peter E. Thornton, Weile Wang, Ning Zeng, Zhenzhong Zeng, Fang Zhao, Qiuan Zhu, Zaichun Zhu Sep 2015

Disentangling Climatic And Anthropogenic Controls On Global Terrestrial Evapotranspiration Trends, Jiafu Mao, Wenting Fu, Xiaoying Shi, Daniel M. Ricciuto, Joshua B. Fisher, Robert E. Dickinson, Yaxing Wei, Willis Shem, Shilong Piao, Kaicun Wang, Christopher R. Schwalm, Hanqin Tian, Mingquan Mu, Altaf Arain, Philippe Ciais, Robert Cook, Yongdiu Dai, Daniel Hayes, Forrest M. Hoffman, Maoyi Huang, Suo Huang, Deborah N. Huntzinger, Akihiko Ito, Atul Jain, Anthony W. King, Huimin Lei, Chaoqun (Crystal) Lu, Huimin Lei, Anna M. Michalak, Changhui Peng, Shushi Peng, Benjamin Poulter, Kevin Schaefer, Elshin Jafarov, Peter E. Thornton, Weile Wang, Ning Zeng, Zhenzhong Zeng, Fang Zhao, Qiuan Zhu, Zaichun Zhu

Chaoqun (Crystal) Lu

We examined natural and anthropogenic controls on terrestrial evapotranspiration (ET) changes from 1982 to 2010 using multiple estimates from remote sensing-based datasets and process-oriented land surface models.A significant increasing trend of ET in each hemisphere was consistently revealed by observationally-constrained data and multi-model ensembles that considered historic natural and anthropogenic drivers. The climate impacts were simulated to determine the spatiotemporal variations in ET. Globally, risingCO2 ranked second in these models after the predominant climatic influences, and yielded decreasing trends in canopy transpiration and ET, especially for tropical forests and high-latitude shrub land. Increasing nitrogen deposition slightly amplified global ET via …


A Regional Comparison Of Water Use Efficiency For Miscanthus, Switchgrass And Maize, Andy Vanloocke, Tracy E. Twine, Marcelo Zeri, Carl J. Bernacchi May 2015

A Regional Comparison Of Water Use Efficiency For Miscanthus, Switchgrass And Maize, Andy Vanloocke, Tracy E. Twine, Marcelo Zeri, Carl J. Bernacchi

Andy VanLoocke

The production of cellulosic feedstocks for renewable fuels will increase over the coming decades. However, it is uncertain which feedstocks will be best suited for bioenergy production. A key factor dictating feedstock selection for a given region is water use efficiency (WUE), the trade-off between evapotranspiration (ET) and carbon uptake or productivity. Using an ecosystem model, two of the top candidate cellulosic feedstocks, Miscanthus × giganteus (miscanthus) and Panicum virgatum(switchgrass) were compared to Zea mays L. (maize), the existing dominant bioenergy feedstock, with 0 and 25% residue removal for the Midwest US. We determined productivity in three ways: harvested yield …


Future Carbon Dioxide Concentration Decreases Canopy Evapotranspiration And Soil Water Depletion By Field-Grown Maize, Mir Zaman Hussain, Andy Vanloocke, Matthew H. Siebers, Ursula M. Ruiz-Vera, R. J. Cody Markelz, Donald R. Ort, Carl J. Bernacchi May 2015

Future Carbon Dioxide Concentration Decreases Canopy Evapotranspiration And Soil Water Depletion By Field-Grown Maize, Mir Zaman Hussain, Andy Vanloocke, Matthew H. Siebers, Ursula M. Ruiz-Vera, R. J. Cody Markelz, Donald R. Ort, Carl J. Bernacchi

Andy VanLoocke

Maize, in rotation with soybean, forms the largest continuous ecosystem in temperate North America, therefore changes to the biosphere-atmosphere exchange of water vapor and energy of these crops are likely to have an impact on the Midwestern US climate and hydrological cycle. As a C4 crop, maize photosynthesis is already CO2-saturated at current CO2 concentrations ([CO2]) and the primary response of maize to elevated [CO2] is decreased stomatal conductance (gs). If maize photosynthesis is not stimulated in elevated [CO2], then reduced gs is not offset by greater canopy leaf area, which could potentially result in a greater ET reduction relative …


Responses Of Global Terrestrial Evapotranspiration To Climate Change And Increasing Atmospheric Co2 In The 21st Century, Shufen Pan, Hanqin Tian, Shree R. S. Dangal, Qichun Yang, Jia Yang, Chaoqun (Crystal) Lu, Bo Tao, Wei Ren, Zhiyun Ouyang Jan 2015

Responses Of Global Terrestrial Evapotranspiration To Climate Change And Increasing Atmospheric Co2 In The 21st Century, Shufen Pan, Hanqin Tian, Shree R. S. Dangal, Qichun Yang, Jia Yang, Chaoqun (Crystal) Lu, Bo Tao, Wei Ren, Zhiyun Ouyang

Chaoqun (Crystal) Lu

Quantifying the spatial and temporal patterns of the water lost to the atmosphere through land surface evapotranspiration (ET) is essential for understanding the global hydrological cycle, but remains much uncertain. In this study, we use the Dynamic Land Ecosystem Model to estimate the global terrestrial ET during 2000–2009 and project its changes in response to climate change and increasing atmospheric CO2 under two IPCC SRES scenarios (A2 and B1) during 2010–2099. Modeled results show a mean annual global terrestrial ET of about 549 (545–552) mm yr−1 during 2000–2009. Relative to the 2000s, global terrestrial ET for the 2090s would increase …


Future Carbon Dioxide Concentration Decreases Canopy Evapotranspiration And Soil Water Depletion By Field-Grown Maize, Andy Vanloocke, Mir Zaman Houssain, Matthew H. Siebers, Ursula M. Ruiz-Vera, R. J. Cody Markelz, Andrew D. B. Leakey, Donald R. Orr, Carl J. Bernacchi Apr 2013

Future Carbon Dioxide Concentration Decreases Canopy Evapotranspiration And Soil Water Depletion By Field-Grown Maize, Andy Vanloocke, Mir Zaman Houssain, Matthew H. Siebers, Ursula M. Ruiz-Vera, R. J. Cody Markelz, Andrew D. B. Leakey, Donald R. Orr, Carl J. Bernacchi

Andy VanLoocke

Maize, in rotation with soybean, forms the largest continuous ecosystem in temperate North America, therefore changes to the biosphere-atmosphere exchange of water vapor and energy of these crops are likely to have an impact on the Midwestern US climate and hydrological cycle. As a C4 crop, maize photosynthesis is already CO2-saturated at current CO2 concentrations ([CO2]) and the primary response of maize to elevated [CO2] is decreased stomatal conductance (gs). If maize photosynthesis is not stimulated in elevated [CO2], then reduced gs is not offset by greater canopy leaf area, which could potentially result in a greater ET reduction relative …


Impact Of Lane Use Change Due To Bioenergy On Midwestern Us Hydrology, Andy Vanloocke, Carl J. Bernacchi, Stephen W. Nesbitt Dec 2012

Impact Of Lane Use Change Due To Bioenergy On Midwestern Us Hydrology, Andy Vanloocke, Carl J. Bernacchi, Stephen W. Nesbitt

Andy VanLoocke

The objective of this paper is to analyze and discuss the impact of land use change due to
bioenergy on Midwestern US hydrology. Together, soybean and maize form the largest single
ecosystem type of the contiguous United States. This agro-ecosystem represents the largest single
land-use in the Midwestern US and dominates regional ecosystem services such as food
production, water quality, evaporation of water to the atmosphere, nutrient cycling, carbon
sequestration, as well as other services. In addition to being two of the dominant food crops
grown throughout the US and the world, these two crops represent the dominant feedstocks used …


A Regional Comparison Of Water Use Efficiency For Miscanthus, Switchgrass And Maize, Andy Vanloocke, Tracy E. Twine, Marcelo Zeri, Carl J. Bernacchi Sep 2012

A Regional Comparison Of Water Use Efficiency For Miscanthus, Switchgrass And Maize, Andy Vanloocke, Tracy E. Twine, Marcelo Zeri, Carl J. Bernacchi

Andy VanLoocke

The production of cellulosic feedstocks for renewable fuels will increase over the coming decades. However, it is uncertain which feedstocks will be best suited for bioenergy production. A key factor dictating feedstock selection for a given region is water use efficiency (WUE), the trade-off between evapotranspiration (ET) and carbon uptake or productivity. Using an ecosystem model, two of the top candidate cellulosic feedstocks, Miscanthus × giganteus (miscanthus) and Panicum virgatum (switchgrass) were compared to Zea mays L. (maize), the existing dominant bioenergy feedstock, with 0 and 25% residue removal for the Midwest US. We determined productivity in three ways: harvested …


Rising Ozone Concentrations Decrease Soybean Evapotranspiration And Water Use Efficiency Whilst Increasing Canopy Temperature, Andy Vanloocke, Amy M. Betzelberger, Elizabeth A. Ainsworth, Carl J. Bernacchi Jun 2012

Rising Ozone Concentrations Decrease Soybean Evapotranspiration And Water Use Efficiency Whilst Increasing Canopy Temperature, Andy Vanloocke, Amy M. Betzelberger, Elizabeth A. Ainsworth, Carl J. Bernacchi

Andy VanLoocke

Here, we investigated the effects of increasing concentrations of ozone ([O3]) on soybean canopy-scale fluxes of heat and water vapor, as well as water use efficiency (WUE), at the Soybean Free Air Concentration Enrichment (SoyFACE) facility. Micrometeorological measurements were made to determine the net radiation (Rn), sensible heat flux (H), soil heat flux (G0) and latent heat flux (λET) of a commercial soybean (Glycine max) cultivar (Pioneer 93B15), exposed to a gradient of eight daytime average ozone concentrations ranging from approximately current (c. 40 ppb) to three times current (c. 120 ppb) levels. As [O3] increased, soybean canopy fluxes of …


The Impacts Of Miscanthus×Giganteus Production On The Midwest Us Hydrologic Cycle, Andy Vanloocke, Carl J. Bernacchi, Tracy E. Twine Jul 2010

The Impacts Of Miscanthus×Giganteus Production On The Midwest Us Hydrologic Cycle, Andy Vanloocke, Carl J. Bernacchi, Tracy E. Twine

Andy VanLoocke

Perennial grasses are being considered as candidates for biofuel feedstocks to provide an alternative energy source to fossil fuels. Miscanthus×giganteus (miscanthus), in particular, is a grass that is predicted to provide more energy per sown area than corn ethanol and reduce net carbon dioxide emissions by increasing the storage of carbon belowground. Miscanthus uses more water than Zea mays (maize), mainly as a result of a longer growing season and higher productivity. Conversion of current land use for miscanthus production will likely disrupt regional hydrologic cycles, yet the magnitude, timing, and spatial distribution of effects are unknown. Here, we show …


A Comparison Of Canopy Evapotranspiration For Maize And Two Perennial Grasses Identified As Potential Bioenergy Crops, Andy Vanloocke, George C. Hickman, Frank G. Dohleman, Carl J. Bernacchi Jul 2010

A Comparison Of Canopy Evapotranspiration For Maize And Two Perennial Grasses Identified As Potential Bioenergy Crops, Andy Vanloocke, George C. Hickman, Frank G. Dohleman, Carl J. Bernacchi

Andy VanLoocke

In the Midwestern US, perennial rhizomatous grasses (PRGs) are considered one of the most promising vegetation types to be used as a cellulosic feedstock for renewable energy production. The potential widespread use of biomass crops for renewable energy production has sparked numerous environmental concerns, including the impacts of land-use change on the hydrologic cycle. We predicted that total seasonal evapotranspiration (ET) would be higher for PRGs relative to maize resulting from higher leaf area and a prolonged growing season. We further predicted that, compared with maize, higher aboveground biomass associated with PRGs would offset the higher ET and increase water-use …