Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Life Sciences

Microbial And Co2 Responses To Water Stresses Show Decreased Productivity And Diversity Through Time, David Michael Robinson May 2018

Microbial And Co2 Responses To Water Stresses Show Decreased Productivity And Diversity Through Time, David Michael Robinson

Theses and Dissertations

Some bacterial taxa when stimulated by water additions will break dormancy, grow, and become dominant members of the community and contribute significant pulses of CO2 associated with the rewetting event. These pulses of activity are associated with high levels of bacterial productivity in soils. (Aanderud et al. 2011) We examined the bacterial taxa that resuscitate and become metabolically active following two forms of water stress (soil drying-rewetting and freeze-thaw cycles) and we captured and measured the CO2 emanating from those soils. Specifically, We used target metagenomics, which uses a specific gene pool within bacteria that is associated with …


Novel Insights Into The Contribution Of Cellular Senescence To Cancer Therapy: Reversibility, Dormancy And Senolysis., Tareq Saleh Jan 2018

Novel Insights Into The Contribution Of Cellular Senescence To Cancer Therapy: Reversibility, Dormancy And Senolysis., Tareq Saleh

Theses and Dissertations

Cellular senescence a specialized form of growth arrest that contributes to the pathogenesis of several aging-related disorders including cancer. While by definition tumor cells are considered immortalized, they can undergo senescence when exposed to conventional and targeted cancer therapy. Therapy-Induced Senescence (TIS) represents a fundamental response to therapy and impacts its outcomes. However, TIS has been considered a positive therapeutic goal since senescent tumor cells are expected to enter a state of permanent growth abrogation. In this work we examined the hypothesis that a subpopulation of senescent cells can re-acquire proliferative potential after a state of senescent dormancy, indicating that …