Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Publications and Research

2020

Vibrio cholerae

Articles 1 - 1 of 1

Full-Text Articles in Life Sciences

C-Di-Gmp Modulates Type Iv Msha Pilus Retraction And Surface Attachment In Vibrio Cholerae, Kyle A. Floyd, Calvin K. Lee, Wujing Xian, Mahmoud Nametalla, Aneesa Valentine, Benjamin Crair, Shiwei Zhu, Hannah Q. Hughes, Jennifer L. Chlebek, Daniel C. Wu, Jin Hwan Park, Ali M. Farhat, Charles J. Lomba, Courtney K. Ellison, Yves V. Brun, Javier Campos-Gomez, Ankur B. Dalia, Jun Liu, Nicolas Biais, Gerard C. L. Wong, Fitnat H. Yildiz Mar 2020

C-Di-Gmp Modulates Type Iv Msha Pilus Retraction And Surface Attachment In Vibrio Cholerae, Kyle A. Floyd, Calvin K. Lee, Wujing Xian, Mahmoud Nametalla, Aneesa Valentine, Benjamin Crair, Shiwei Zhu, Hannah Q. Hughes, Jennifer L. Chlebek, Daniel C. Wu, Jin Hwan Park, Ali M. Farhat, Charles J. Lomba, Courtney K. Ellison, Yves V. Brun, Javier Campos-Gomez, Ankur B. Dalia, Jun Liu, Nicolas Biais, Gerard C. L. Wong, Fitnat H. Yildiz

Publications and Research

Biofilm formation by Vibrio cholerae facilitates environmental persistence, and hyperinfectivity within the host. Biofilm formation is regulated by 3’,5’-cyclic diguanylate (c-di-GMP) and requires production of the type IV mannose-sensitive hemagglutinin (MSHA) pilus. Here, we show that the MSHA pilus is a dynamic extendable and retractable system, and its activity is directly controlled by c-di-GMP. The interaction between c-di-GMP and the ATPase MshE promotes pilus extension, whereas low levels of c-di-GMP correlate with enhanced retrac- tion. Loss of retraction facilitated by the ATPase PilT increases near-surface roaming motility, and impairs initial surface attachment. However, prolonged retraction upon surface attach- ment results …