Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 8 of 8

Full-Text Articles in Life Sciences

The Impacts Of Anthropogenic Activity And Climate Change On The Formation Of Harmful Algal Blooms (Habs) And Its Ecological Consequence, Zhangxi Hu, Aifeng Li, Zhun Li, Margaret R. Mulholland Jan 2024

The Impacts Of Anthropogenic Activity And Climate Change On The Formation Of Harmful Algal Blooms (Habs) And Its Ecological Consequence, Zhangxi Hu, Aifeng Li, Zhun Li, Margaret R. Mulholland

OES Faculty Publications

No abstract provided.


Potential Interactions Between Diatoms And Bacteria Are Shaped By Trace Element Gradients In The Southern Ocean, Alexa R. Sterling, Laura Z. Holland, Randelle M. Bundy, Shannon M. Burns, Kristen N. Buck, P. Dreux Chappell, Bethany D. Jenkins Jan 2023

Potential Interactions Between Diatoms And Bacteria Are Shaped By Trace Element Gradients In The Southern Ocean, Alexa R. Sterling, Laura Z. Holland, Randelle M. Bundy, Shannon M. Burns, Kristen N. Buck, P. Dreux Chappell, Bethany D. Jenkins

OES Faculty Publications

The growth of diatoms in the Southern Ocean, especially the region surrounding the West Antarctic Peninsula, is frequently constrained by low dissolved iron and other trace metal concentrations. This challenge may be overcome by mutualisms between diatoms and co-occurring associated bacteria, in which diatoms produce organic carbon as a substrate for bacterial growth, and bacteria produce siderophores, metal-binding ligands that can supply diatoms with metals upon uptake as well as other useful secondary compounds for diatom growth like vitamins. To examine the relationships between diatoms and bacteria in the plankton (diatom) size class (> 3 mu m), we sampled both …


Phytoplankton Thermal Trait Parameterization Alters Community Structure And Biogeochemical Processes In A Modeled Ocean, Stephanie I. Anderson, Clara Fronda, Andrew D. Barton, Sophie Clayton, Tatiana A. Rynearson, Stephanie Dutkiewicz Jan 2023

Phytoplankton Thermal Trait Parameterization Alters Community Structure And Biogeochemical Processes In A Modeled Ocean, Stephanie I. Anderson, Clara Fronda, Andrew D. Barton, Sophie Clayton, Tatiana A. Rynearson, Stephanie Dutkiewicz

OES Faculty Publications

Phytoplankton exhibit diverse physiological responses to temperature which influence their fitness in the environment and consequently alter their community structure. Here, we explored the sensitivity of phytoplankton community structure to thermal response parameterization in a modelled marine phytoplankton community. Using published empirical data, we evaluated the maximum thermal growth rates (μmax) and temperature coefficients (Q10; the rate at which growth scales with temperature) of six key Phytoplankton Functional Types (PFTs): coccolithophores, cyanobacteria, diatoms, diazotrophs, dinoflagellates, and green algae. Following three well-documented methods, PFTs were either assumed to have (1) the same μmax and …


Metabolic Profiling Reveals Biochemical Pathways Responsible For Eelgrass Response To Elevated Co2 And Temperature, Carmen C. Zayas-Santiago, Albert Rivas-Ubach, Li-Jung Kuo, Nicholas D. Ward, Richard C. Zimmerman Jan 2020

Metabolic Profiling Reveals Biochemical Pathways Responsible For Eelgrass Response To Elevated Co2 And Temperature, Carmen C. Zayas-Santiago, Albert Rivas-Ubach, Li-Jung Kuo, Nicholas D. Ward, Richard C. Zimmerman

OES Faculty Publications

As CO2 levels in Earth’s atmosphere and oceans steadily rise, varying organismal responses may produce ecological losers and winners. Increased ocean CO2 can enhance seagrass productivity and thermal tolerance, providing some compensation for climate warming. However, the metabolic shifts driving the positive response to elevated CO2 by these important ecosystem engineers remain unknown. We analyzed whole-plant performance and metabolic profiles of two geographically distinct eelgrass (Zostera marina L.) populations in response to CO2 enrichment. In addition to enhancing overall plant size, growth and survival, CO2 enrichment increased the abundance of Calvin Cycle and …


Twenty-First Century Climate Change And Submerged Aquatic Vegetation In A Temperate Estuary: The Case Of Chesapeake Bay, Thomas M. Arnold, Richard C. Zimmerman, Katharina A.M. Engelhardt, J. Court Stevenson Jan 2017

Twenty-First Century Climate Change And Submerged Aquatic Vegetation In A Temperate Estuary: The Case Of Chesapeake Bay, Thomas M. Arnold, Richard C. Zimmerman, Katharina A.M. Engelhardt, J. Court Stevenson

OES Faculty Publications

Introduction: The Chesapeake Bay was once renowned for expansive meadows of submerged aquatic vegetation (SAV). However, only 10% of the original meadows survive. Future restoration effortswill be complicated by accelerating climate change, including physiological stressors such as a predicted mean temperature increase of 2-6°C and a 50-160% increase in CO2 concentrations.

Outcomes: As the Chesapeake Bay begins to exhibit characteristics of a subtropical estuary, summer heat waves will become more frequent and severe. Warming alone would eventually eliminate eelgrass (Zostera marina) from the region. It will favor native heat-tolerant species such as widgeon grass (Ruppia maritima) while facilitating colonization by …


Can We Predict The Future: Juvenile Finfish And Their Seagrass Nurseries In The Chesapeake Bay, Cynthia M. Jones Jan 2014

Can We Predict The Future: Juvenile Finfish And Their Seagrass Nurseries In The Chesapeake Bay, Cynthia M. Jones

OES Faculty Publications

The importance of estuarine seagrass beds as nurseries for juvenile fish has become a universal paradigm, especially for estuaries that are as important as the Chesapeake Bay. Yet, scientific tests of this hypothesis were equivocal depending on species, location, and metrics. Moreover, seagrasses themselves are under threat and one-third of seagrasses have disappeared worldwide with 65 of their losses occurring in estuaries. Although there have been extensive studies of seagrasses in the Chesapeake Bay, surprisingly few studies have quantified the relationship between seagrass as nurseries for finfish in the Bay. Of the few studies that have directly evaluated the use …


An Introduction To Ecology Of Infectious Diseases - Oysters And Estuaries, Eileen E. Hofmann, Susan E. Ford Jan 2012

An Introduction To Ecology Of Infectious Diseases - Oysters And Estuaries, Eileen E. Hofmann, Susan E. Ford

OES Faculty Publications

Infectious diseases are recognized as an important factor regulating marine ecosystems (Harvell et al., 1999, 2002, 2004; Porter et al., 2001; McCallum et al., 2004; Ward and Lafferty, 2004; Stewart et al., 2008; Bienfang et al., 2011). Many of the organisms affected by marine diseases have important ecological roles in estuarine and coastal environments and some are also commercially important. Outbreaks of infectious diseases in these environments, referred to as epizootics, can produce significant population declines and extinctions, both of which threaten biodiversity, food web interactions, and ecosystem productivity (Harvell et al., 2002, 2004).


Response Of Eelgrass Zostera Marina To Co2 Enrichment: Possible Impacts Of Climate Change And Potential For Remediation Of Coastal Habitats, Sherry L. Palacios, Richard C. Zimmerman Jan 2007

Response Of Eelgrass Zostera Marina To Co2 Enrichment: Possible Impacts Of Climate Change And Potential For Remediation Of Coastal Habitats, Sherry L. Palacios, Richard C. Zimmerman

OES Faculty Publications

Projected increases in dissolved aqueous concentrations of carbon dioxide [CO2(aq)] may have significant impacts on photosynthesis Of CO2-limited organisms such as seagrasses. Short-term CO2(aq) enrichment increases photosynthetic rates and reduces light requirements for growth and survival of individual eelgrass Zostera marina L. shoots growing in the laboratory under artificial light regimes for at least 45 d. This study examined the effects of long-term CO2(aq) enrichment on the performance of eelgrass growing under natural light-replete (33% surface irradiance) and light-limited (5% surface irradiance) conditions for a period of 1 yr. Eelgrass shoots were grown at …