Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Life Sciences

Statistical Contributions To Bioinformatics: Design, Modeling, Structure Learning, And Integration, Jeffrey S. Morris, Veera Baladandayuthapani Dec 2016

Statistical Contributions To Bioinformatics: Design, Modeling, Structure Learning, And Integration, Jeffrey S. Morris, Veera Baladandayuthapani

Jeffrey S. Morris

The advent of high-throughput multi-platform genomics technologies providing whole-genome molecular summaries of biological samples has revolutionalized biomedical research. These technologies yield highly structured big data, whose analysis poses significant quantitative challenges. The field of Bioinformatics has emerged to deal with these challenges, and is comprised of many quantitative and biological scientists working together to eectively process these data and extract the treasure trove of information they contain. Statisticians, with their deep understanding of variability and uncertainty quantification, play a key role in these efforts. In this article, we attempt to summarize some of the key contributions of statisticians to bioinformatics, …


Microproteomics: Analysis Of Protein Diversity In Small Samples, Howard B. Gutstein, Jeffrey S. Morris, Suresh P. Annangudi, Jonathan V. Sweedler Feb 2008

Microproteomics: Analysis Of Protein Diversity In Small Samples, Howard B. Gutstein, Jeffrey S. Morris, Suresh P. Annangudi, Jonathan V. Sweedler

Jeffrey S. Morris

Proteomics, the large-scale study of protein expression in organisms, offers the potential to evaluate global changes in protein expression and their post-translational modifications that take place in response to normal or pathological stimuli. One challenge has been the requirement for substantial amounts of tissue in order to perform comprehensive proteomic characterization. In heterogeneous tissues, such as brain, this has limited the application of proteomic methodologies. Efforts to adapt standard methods of tissue sampling, protein extraction, arraying, and identification are reviewed, with an emphasis on those appropriate to smaller samples ranging in size from several microliters down to single cells. The …


Statistical Issues In Proteomic Research, Jeffrey S. Morris Dec 2007

Statistical Issues In Proteomic Research, Jeffrey S. Morris

Jeffrey S. Morris

No abstract provided.


Laser Capture Sampling And Analytical Issues In Proteomics, Howard Gutstein, Jeffrey S. Morris Jan 2007

Laser Capture Sampling And Analytical Issues In Proteomics, Howard Gutstein, Jeffrey S. Morris

Jeffrey S. Morris

Proteomics holds the promise of evaluating global changes in protein expression and post-translational modificaiton in response to environmental stimuli. However, difficulties in achieving cellular anatomic resolution and extracting specific types of proteins from cells have limited the efficacy of these techniques. Laser capture microdissection has provided a solution to the problem of anatomical resolution in tissues. New extraction methodologies have expanded the range of proteins identified in subsequent analyses. This review will examine the application of laser capture microdissection to proteomic tissue sampling, and subsequent extraction of these samples for differential expression analysis. Statistical and other quantitative issues important for …