Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 30 of 34

Full-Text Articles in Life Sciences

Breaking Virulent: The Coincidental Evolution Of Virulence Factors In Bacteria., Rhiannon Emmanuelle Cecil Dec 2023

Breaking Virulent: The Coincidental Evolution Of Virulence Factors In Bacteria., Rhiannon Emmanuelle Cecil

Electronic Theses and Dissertations

Understanding how innocuous organisms can evolve to be pathogenic to humans is of increasing global concern. Further, understanding how existing pathogens may evolved to be more virulent is also vital to our ability to provide healthcare to people afflicted with diseases that promote chronic bacterial infections, such as cystic fibrosis. With the rise of antibiotic resistance in both bacteria and fungi it is paramount that new therapeutics are identified. Understanding what mutations occur that result in increased virulence in microbes can potentially provide new targets for antimicrobial drugs to combat antibiotic resistance. The Coincidental Evolution Hypothesis is a fundamental hypothesis …


Establishing The Efficacy Of Non-Cellular Components Of Adipose-Derived Stromal Vascular Fraction In Promoting Angiogenesis., Daniel Benson Dec 2022

Establishing The Efficacy Of Non-Cellular Components Of Adipose-Derived Stromal Vascular Fraction In Promoting Angiogenesis., Daniel Benson

Electronic Theses and Dissertations

Microvascular disease is hallmarked by pathophysiological conditions such as endothelial senescence, intimal thickening which impairs vasodilation, and regression of the capillary beds causing tissue ischemia in the myocardium or in peripheral vascular networks. Adipose-derived stromal vascular fraction (SVF) has previously demonstrated the ability to revascularize tissue. Increasing evidence shows that regenerative cells elicit their therapeutic benefit by paracrine mechanisms, leaving open extracellular vesicles (EVs) as a potential crux of the cell therapy paradigm. To test this idea, three types of gelatin methacrylate hydrogels were employed: SVF gels, EV gels derived from SVF, and blank control gels, which were used in-vitro …


Determination Of The Functional Role Of Rab-Ggt In Physcomitrium Patens., Hyun Jin Jung Aug 2022

Determination Of The Functional Role Of Rab-Ggt In Physcomitrium Patens., Hyun Jin Jung

Electronic Theses and Dissertations

Protein prenylation, a common lipid post-translational modification, is required for growth and development in eukaryotes. Rab geranylgeranylation involves the addition of one or two 20-carbon geranylgeranyl moieties to Rab-GTPase target proteins, which regulate intracellular vesicle trafficking. The reaction is carried out by heterodimeric Rab geranylgeranyltransferase (Rab-GGT), which is composed of two associated α- and β-subunits, with the assistance of an additional protein called Rab escort protein (REP). Loss of function of the Rab-GGT α subunit RGTA1 has not been reported in any plant. While knockout of either of the two β subunits RGTB1 or RGTB2 results in …


A Computational Model Of The Line-1 Retrotransposon Life Cycle And Visualization Of Metabolic Networks In 3-Dimensions., Michael D. Martin Aug 2022

A Computational Model Of The Line-1 Retrotransposon Life Cycle And Visualization Of Metabolic Networks In 3-Dimensions., Michael D. Martin

Electronic Theses and Dissertations

Computational modeling of metabolic reactions and cellular systems is evolving as a tool for quantitative prediction of metabolic parameters and reaction pathway analysis. In this work, the basics of computational cell biology are presented as well as a summary of physical processes within the cell, and the algorithmic methods used to find time dependent solutions. Protein-protein and enzyme-substrate interactions are mathematically represented via mass action kinetics to construct sets of linear differential equations that describe reaction rates and formation of protein complexes. Using mass action methods, examples of reaction networks and their solutions are presented within the Virtual Cell simulation …


Functional Role Of Ppal And Potential For Moss In Industrial Applications., Susana Perez Martinez May 2022

Functional Role Of Ppal And Potential For Moss In Industrial Applications., Susana Perez Martinez

Electronic Theses and Dissertations

This dissertation is an examination and characterization of the functional roles of PPAL. PROTEIN PRENYLTRANSFERASE ALPHA SUBUNIT-LIKE (PPAL) is a recently discovered gene. PPAL homologs are present in all plants and many animals, where its function is largely unknown. It is possible that PPAL could participate in prenylation processes since it shares similarity to the α subunits of known prenylation enzymes. Prenylation is a post-translational modification of proteins that involves the addition of a lipid moiety to proteins to facilitate membrane targeting and association and promote protein-protein interactions. Prenylation has important roles in plant growth and development, including …


Role Of Galactose, Thiazolidinediones, And Neet Proteins In Mitochondrial Physiology And Therapeutic Development., Robert Anthony Skolik May 2022

Role Of Galactose, Thiazolidinediones, And Neet Proteins In Mitochondrial Physiology And Therapeutic Development., Robert Anthony Skolik

Electronic Theses and Dissertations

This dissertation explores the relationship between mitochondrial physiology and development of therapeutics. Mitochondrial dysfunction is associated with both acute and chronic forms of pathophysiology. This work aims to address development efforts at the cell culture and drug-target levels with respect to mitochondria. At the cell culture level, I characterize an approach that has been shown to improve the physiological dependency on mitochondria in tumor-derived cells. I demonstrate that prolonged replacement of glucose with galactose in culture medium induces a global metabolic shift in hepatocellular carcinoma (HepG2) cells to closer reflect a primary hepatocyte phenotype (Chapter 2). I characterize this shift …


The Roles Of Pon2 In Mitochondrial Physiology, Lung Tumor Cell Proliferation, And Lung Tumorigenesis., Aaron Whitt May 2022

The Roles Of Pon2 In Mitochondrial Physiology, Lung Tumor Cell Proliferation, And Lung Tumorigenesis., Aaron Whitt

Electronic Theses and Dissertations

Paraoxonase 2 (PON2) is an intracellular, multifunctional enzyme with near-ubiquitous tissue distribution. Within cells, PON2 is localized to mitochondria and endoplasmic reticulum (ER), where it mitigates the formation of reactive oxygen species (ROS). PON2’s chief enzymatic function is its lactonase activity, through which it catalyzes the hydrolysis of a bacterial quorum-sensing molecule, N-(3-oxododecanoyl)-l-homoserine lactone (C12), effectively disrupting bacterial intercellular communication and protecting against infection. C12 is produced by the opportunistic pathogen Pseudomonas aeruginosa and has been shown to disrupt various aspects of eukaryotic host cell physiology and evoke apoptotic cell death through the activity of PON2. Additionally, PON2 has garnered …


Cannabinoids And Retinal Fibrotic Disorders., Lucy June Sloan May 2022

Cannabinoids And Retinal Fibrotic Disorders., Lucy June Sloan

Electronic Theses and Dissertations

Retinal fibrosis is detrimental to vision. Retinal pigment epithelial (RPE) cells contribute to several retinal fibrotic diseases. Upon exposure to TGF-β, a key fibrotic cytokine, RPE cells trans-differentiate to myofibroblasts marked by the integration of α-SMA fibers into F-actin stress fibers, which confer strong contractility. Myofibroblasts produce and contract the collagen-rich fibrotic scar and disrupt retinal architecture. In this study, we investigated the in vitro effects of the putative endocannabinoid compound N-oleoyl dopamine (OLDA) on TGF-β2 induced porcine RPE cell contraction and α-SMA expression. Using an in vitro collagen matrix contraction assay, we found that OLDA inhibited TGF-β2 induced contraction …


Visualizing Anhydrobiosis: Liquid-Liquid Phase Separation, Membraneless Organelles, And Cellular Reorganization., Clinton J. Belott Dec 2021

Visualizing Anhydrobiosis: Liquid-Liquid Phase Separation, Membraneless Organelles, And Cellular Reorganization., Clinton J. Belott

Electronic Theses and Dissertations

Water is an integral and necessary component of life. It is then, exceedingly remarkable that some species are capable of surviving virtually complete water loss for extended periods of time. Several decades of intense research into anhydrobiosis, or life without water, have given significant insights into the molecular mechanisms governing this phenomenon. Anhydrobiosis-related intrinsically disordered (ARID) proteins have been demonstrated to be critically important for desiccation tolerance in many anhydrobiotic species and exhibit a considerably wide range of protective properties that include membrane stabilization, reinforcing bioglass formation, and protein stabilization. This dissertation begins with cellular dielectrophoresis suggesting that two ARID …


Investigating A Novel Function For Phosphoserine Aminotransferase 1 (Psat1) In Epidermal Growth Factor Receptor (Egfr)-Mediated Lung Tumorigenesis., Rumeysa Biyik-Sit May 2021

Investigating A Novel Function For Phosphoserine Aminotransferase 1 (Psat1) In Epidermal Growth Factor Receptor (Egfr)-Mediated Lung Tumorigenesis., Rumeysa Biyik-Sit

Electronic Theses and Dissertations

Phosphoserine aminotransferase 1 (PSAT1) catalyzes the second enzymatic step within the serine synthetic pathway (SSP) and its expression is elevated in numerous human cancers, including non-small cell lung cancer (NSCLC). Epidermal growth factor receptor (EGFR) mutant NSCLC is characterized by activating mutations within its tyrosine kinase domain and accounts for 17% of lung adenocarcinomas. Although elevated SSP activity has been observed in EGFR-mutant lung cancer cells, the involvement of PSAT1 in EGFR-mediated oncogenesis is still unclear. Here, we explore a putative non-canonical function for PSAT1 using biochemical approaches to elucidate unknown interacting proteins and genomic RNA-seq profiling to identify cellular …


Tissue-Resident Myeloid-Derived Suppressor Cells Modulate Immune Homeostasis In Healthy Adipose., Katlin Brooke Stivers Aug 2020

Tissue-Resident Myeloid-Derived Suppressor Cells Modulate Immune Homeostasis In Healthy Adipose., Katlin Brooke Stivers

Electronic Theses and Dissertations

Our goal with this study was to gain insight into the homeostatic immune cell network in healthy adipose tissue. Specifically, we sought to determine if the immature myeloid cells found in healthy and inflamed adipose were, in fact, tissue-resident myeloid-derived suppressor cells (MDSCs). Using various in vitro and in vivo methods, we have uncovered a population of CD11bHi Ly6CHi Ly6G- MDSCs resident in healthy adipose tissue. To the best of our knowledge this is the first time that these cells have been investigated and described in healthy adipose tissue. Systemic MDSC depletion lead to the accumulation of …


A Novel Role For Rassf1a In The Regulation Of Ras Activation., Desmond Ramón Harrell Stewart Aug 2020

A Novel Role For Rassf1a In The Regulation Of Ras Activation., Desmond Ramón Harrell Stewart

Electronic Theses and Dissertations

Ras is the most frequently activated oncogene in human cancer. It is not only the most frequently mutated oncogene, but is also rendered hyperactive in the wild-type form by aberrant regulation. Ras drives transformation and contributes to tumor aggressiveness by activating multiple downstream mitogenic effectors. Ras also possesses the paradoxical ability to induce apoptosis and senescence. Ras-induced apoptosis is not well understood, but has been largely attributed to the RASSF tumor suppressors, particularly RASSF1A. RASSF1A mediates Ras-induced apoptosis by activating pro-apoptotic proteins such as the MST kinases and BAX. RASSF1A is among the most frequently inactivated tumor suppressors in human …


Development Of In Vitro Models To Study The Rapid Extraintestinal Dissemination Of Salmonella., Adarsh Gopinath May 2020

Development Of In Vitro Models To Study The Rapid Extraintestinal Dissemination Of Salmonella., Adarsh Gopinath

Electronic Theses and Dissertations

Salmonella appears in the bloodstream of mice in as little as 15 minutes after oral inoculation and establishes persistent colonies in the spleen and liver. While its pathway to blood is undetermined, this phenomenon is dependent on the activity of Salmonella pathogenicity island 2 (SPI-2) coded type III secretion system (T3SS) and CD18+ phagocytes. We hypothesize that dendritic cells associated with the basal face of the gut epithelium, that are naturally migratory and known to sample for luminal antigens directly transport Salmonella to the bloodstream. This process comprises of at least two phases, dissociation and reverse transmigration. We define dissociation …


Characterization Of A More Clinically Relevant Human Leukemia Xenograft Model To Examine Perturbation Of Met/Sam Metabolism As A Novel Therapeutic Paradigm For Mll-R Leukemia In Vivo., Aditya Barve Aug 2019

Characterization Of A More Clinically Relevant Human Leukemia Xenograft Model To Examine Perturbation Of Met/Sam Metabolism As A Novel Therapeutic Paradigm For Mll-R Leukemia In Vivo., Aditya Barve

Electronic Theses and Dissertations

Acute myeloid leukemia (AML), is a heterogeneous clonal disorder characterized by an accumulation of malignant myeloid progenitors in the bone marrow (BM), hindering normal hematopoiesis. AML exhibits dramatic heterogeneity in terms of cytogenetics, morphology, and chemotherapeutic sensitivity. Therefore, the investigation of novel, efficacious AML therapeutics will require advanced preclinical in vivo model systems, capable of recapitulating patient specific disease heterogeneity, and induction chemotherapy outcomes. A major focus and eventual outcome of this work was the establishment and development of a more clinically relevant mouse xenograft model of patient AML, that efficiently harbors patient derived xenografts (PDXs), and unlike more prevalent …


Exploring The Role Of Ptn1 In Ustilago Maydis., Lalu Murali Krishna Vijayakrishna Pillai May 2019

Exploring The Role Of Ptn1 In Ustilago Maydis., Lalu Murali Krishna Vijayakrishna Pillai

Electronic Theses and Dissertations

Signal transduction is a key aspect of biological life. Cell signaling involves a series of biochemical and molecular steps that regulate the normal cellular functions, and any disruption at any of these steps is likely to have substantial impacts on cell physiology. The current study was aimed at the characterization of ptn1 of Ustilago maydis, a basidiomycete fungus. When the U. maydis, ptn1 gene was either deleted or overexpressed, it was found that the deletion of this gene lead to reduced virulence, spore production, and germination rate; effects of the overexpression were more subtle or not discernable. Previous studies …


Paraoxonase 2 Is Critical For Non-Small Cell Lung Carcinoma Proliferation., Aaron Whitt May 2019

Paraoxonase 2 Is Critical For Non-Small Cell Lung Carcinoma Proliferation., Aaron Whitt

Electronic Theses and Dissertations

Non-small cell lung carcinoma (NSCLC) comprises 85% of lung cancer diagnoses and is plagued by drug resistance. Thus, elucidating the underlying mechanisms of NSCLC is paramount to expand future treatment options. Paraoxonase 2 (PON2), an intracellular enzyme with arylesterase and lactonase functions, has well-established anti-atherosclerotic activity. Recent studies show PON2 is overexpressed in a variety of tumors and confers drug resistance, although these interactions have not been thoroughly examined in NSCLC. Thus, we sought to investigate the role of PON2 in cellular proliferation using PON2-knockout mice, primary mouse cells, and NSCLC cell lines. Using these approaches, we demonstrate that PON2 …


Defects In Fetal Mouth Movement And Pharyngeal Patterning Underlie Cleft Palate Caused By Retinoid Deficiency., Regina Friedl May 2019

Defects In Fetal Mouth Movement And Pharyngeal Patterning Underlie Cleft Palate Caused By Retinoid Deficiency., Regina Friedl

Electronic Theses and Dissertations

Cleft palate is a common birth defect. Etiologic mechanisms of palate cleft include defects in palate morphogenesis, mandibular growth, or spontaneous fetal mouth movement. Cleft palate linked to deficient fetal mouth movement has been demonstrated directly only in a single experimental model of loss of neurotransmission. Here, using retinoid deficient mouse embryos, we demonstrate directly for the first time that deficient fetal mouth movement and cleft palate occurs as a result of mis-patterned development of pharyngeal peripheral nerves and cartilages. Retinoid deficient embryos were generated by inactivation of retinol dehydrogenase 10 (Rdh10), which is critical for production of …


Epidermal Growth Factor-Like Ligands Regulate Dimer Selection., Jamie S. Rush Dec 2018

Epidermal Growth Factor-Like Ligands Regulate Dimer Selection., Jamie S. Rush

Electronic Theses and Dissertations

There are thirteen known endogenous EGF-like ligands. We previously reported that Betacellulin (BTC) increases ligand-mediated corneal wound healing more than Epidermal Growth Factor (EGF) [Peterson et al. (2014) IOVS 55(5):2870-80], although the molecular reason for this is unknown. Despite being better at promoting wound healing via enhanced cell migration, BTC has reduced receptor affinity and weaker induction of EGFR phosphorylation. These data indicate that BTC’s response is not due to enhanced affinity or EGFR-kinase activity. Receptor phosphorylation and proximity ligation assays indicate that BTC treatment significantly increases ErbB3 phosphorylation and EGFR:ErbB3 heterodimers. BTC traffics EGFR at a faster rate than …


Deciphering The Role Of Human Arylamine N-Acetyltransferase 1 (Nat1) In Breast Cancer Cell Metabolism Using A Systems Biology Approach., Samantha Marie Carlisle Aug 2018

Deciphering The Role Of Human Arylamine N-Acetyltransferase 1 (Nat1) In Breast Cancer Cell Metabolism Using A Systems Biology Approach., Samantha Marie Carlisle

Electronic Theses and Dissertations

Background: Human arylamine N-acetyltransferase 1 (NAT1) is a phase II xenobiotic metabolizing enzyme found in almost all tissues. NAT1 can additionally hydrolyze acetyl-coenzyme A (acetyl-CoA) in the absence of an arylamine substrate. NAT1 expression varies inter-individually and is elevated in several cancers including estrogen receptor positive (ER+) breast cancers. Additionally, multiple studies have shown the knockdown of NAT1, by both small molecule inhibition and siRNA methods, in breast cancer cells leads to decreased invasive ability and proliferation and decreased anchorage-independent colony formation. However, the exact mechanism by which NAT1 expression affects cancer risk and progression remains unclear. Additionally, consequences …


Egfr Signaling From The Early Endosome., Julie A. Gosney Aug 2018

Egfr Signaling From The Early Endosome., Julie A. Gosney

Electronic Theses and Dissertations

The epidermal growth factor receptor (EGFR) is a receptor tyrosine kinase that is an integral component of proliferative signaling. When activated by a ligand at the plasma membrane, EGFR dimerizes with another ErbB family receptor, leading to kinase domain activation and transphosphorylation of C-terminus tyrosine residues. These phosphotyrosines act as crucial regulators of EGFR signaling as effector proteins dock to the receptor at these sites. The receptor undergoes clathrin-mediated endocytosis into early endosomes, where it can then be trafficked to a lysosome for degradation. However, the kinase domain of EGFR retains its activity during trafficking, suggesting that EGFR can continue …


Unfolded Protein Response Pathways In Skeletal Muscle Homeostasis., Kyle R. Bohnert Aug 2018

Unfolded Protein Response Pathways In Skeletal Muscle Homeostasis., Kyle R. Bohnert

Electronic Theses and Dissertations

Skeletal muscle mass, contractile properties, and metabolic function are regulated through the coordinated activation of multiple intracellular signaling pathways and genetic reprogramming. The endoplasmic reticulum (ER) plays a pivotal role in protein folding and calcium homeostasis in many cell types, including skeletal muscle. Disruption of calcium levels or accumulation of misfolded proteins in the ER lumen leads to stress, which results in the activation of a signaling network called the unfolded protein response (UPR). Further, recent studies have suggested that in certain conditions, UPR pathways can be activated independent of ER stress. However, the role of ER stress and the …


The Dlk1-Meg3 Locus In Malignant Cells Of Proposed Primordial Germ Cell Origins., Zachariah Payne Sellers Aug 2017

The Dlk1-Meg3 Locus In Malignant Cells Of Proposed Primordial Germ Cell Origins., Zachariah Payne Sellers

Electronic Theses and Dissertations

Primordial germ cells (PGCs) are hypothesized to deposit hematopoietic stem cells (HSCs) along their migration route through the embryo during the early stages of embryogenesis. PGCs also undergo global chromatin remodeling, including the erasure and reestablishment of genomic imprints, during this migration. While PGCs do not spontaneously form teratomas, their malignant development into germ cell tumors (GCTs) in vivo is often accompanied by the retention of hypomethylation at the IGF2-H19 imprinting control differentially methylated region (DMR). Previous studies in bimaternal embryos determined that proper genomic imprinting at two paternally imprinted loci was necessary for their growth and development: Igf2-H19 and …


Identifying The Signaling Mechanisms Of Egfr-Mediated Apoptosis., Nicole Marion Jackson May 2017

Identifying The Signaling Mechanisms Of Egfr-Mediated Apoptosis., Nicole Marion Jackson

Electronic Theses and Dissertations

The Epidermal Growth Factor Receptor (EGFR) is a 170-kilodalton transmembrane protein that belongs to the ErbB family of receptor tyrosine kinases. Upon ligand-mediated activation, the EGFR is responsible for cell growth, proliferation, and tissue homeostasis; however, the EGFR is overexpressed in many human malignancies, including MDA-MB-468 cells, a metastatic breast epithelial cell line. Studies within this cell line, and other cell lines characterized with high EGFR levels, have shown that EGF stimulation results in the induction of apoptosis. However, the mechanisms and signaling effectors implicated in this process have yet to be elucidated. The overarching research goal of this dissertation …


Retinoic Acid Signaling Regulates Krt5 Independently Of Stem Cell Markers In Submandibular Salivary Gland Epithelium., Timur Maratovich Abashev Dec 2016

Retinoic Acid Signaling Regulates Krt5 Independently Of Stem Cell Markers In Submandibular Salivary Gland Epithelium., Timur Maratovich Abashev

Electronic Theses and Dissertations

Vitamin A metabolism, which produces the signaling molecule Retinoic Acid (RA), has been demonstrated to be important for growth and branching morphogenesis of mammalian embryonic salivary gland epithelium. However, it is not known whether RA functions directly within epithelial cells or in associated tissues that influence morphogenesis of salivary epithelium. Moreover, downstream targets of RA transcriptional regulation have not been identified. Here we show that canonical RA signaling occurs in multiple tissues of embryonic mouse salivary glands, including epithelium, associated parasympathetic ganglion neurons, and non‑neuronal mesenchyme. By culturing epithelium explants in isolation from other tissues we demonstrate that RA influences …


Isolation Of Egfr-Containing Early Endosomes., Julie A. Gosney Aug 2016

Isolation Of Egfr-Containing Early Endosomes., Julie A. Gosney

Electronic Theses and Dissertations

The epidermal growth factor receptor (EGFR) is a receptor tyrosine kinase (RTK) that is an integral component of proliferative signaling. When activated by a ligand at the plasma membrane, EGFR undergoes clathrin-mediated endocytosis. This spatial regulation of the receptor is an important regulator of receptor expression as it mediates its degradation. Endocytosis also has implications on EGFR downstream signaling, though the details are not fully understood. The goal of this thesis is to develop a method to isolate early endosomes in order to study downstream effectors associated with activated EGFR in this compartment. HeLa cells were used to test various …


Identification Of Host Factors Required For Yersinia Pestis Macrophage Intracellular Survival And Their Impact On Vacuole Maturation, Acidification And Trafficking., Michael Graylin Connor May 2016

Identification Of Host Factors Required For Yersinia Pestis Macrophage Intracellular Survival And Their Impact On Vacuole Maturation, Acidification And Trafficking., Michael Graylin Connor

Electronic Theses and Dissertations

Y. pestis is a facultative intracellular pathogen and the causative agent of plague. This bacterium, while most noted or the Black Death during the European 14th century, is not a historic pathogen but a re-emerging pandemic with both domestic and global impact. Y. pestis is capable of colonizing the macrophage, and actively subverts phagolysosome maturation to establish a replicative niche known as the Yersinia containing vacuole (YCV). The exploited host factors required to support the YCV are unknown. Here we identified a comprehensive list of host factors required for Y. pestis survival through a genome-wide RNAi high-throughput screen. We …


Microrna-186 And Metastatic Prostate Cancer., Dominique Zilpha Jones May 2016

Microrna-186 And Metastatic Prostate Cancer., Dominique Zilpha Jones

Electronic Theses and Dissertations

MicroRNA (miR) dysregulation alters cancer-associated gene expression, which contributes to cancer pathogenesis. For example, miR-186 over expression lead to enhanced proliferation and migration in pancreatic cancer cell models. However, the role of miR-186 in prostate cancer (PCa) remains controversial. Previously, miR-186-5p was up-regulated in PCa patient serum (stage III/IV) compared to controls. Furthermore, miR-186-5p was up-regulated in metastatic PCa (PC-3, MDA PCa 2b, LNCaP) relative to normal prostate epithelial cells (RWPE1). We hypothesized miR-186 inhibition will reduce aggressive PCa using metastatic cell models. To test this, we evaluated whether miR-186-5p inhibition would reduce aggressive PCa behavior and overexpression induce malignant …


Modulation Of Cell Death Signaling And Cell Proliferation By The Interaction Of Homoserine Lactones And Paraoxonase 2., Aaron Mackallan Neely May 2016

Modulation Of Cell Death Signaling And Cell Proliferation By The Interaction Of Homoserine Lactones And Paraoxonase 2., Aaron Mackallan Neely

Electronic Theses and Dissertations

Pseudomonas aeruginosa produces N-(3-oxododecanoyl)-homoserine lactone (C12) as a quorum-sensing molecule that functions to facilitate bacteria-bacteria communication. C12 has also been reported to affect many aspects of human host cell physiology, including evoking cell death in various types of cells. However, the signaling pathway(s) leading to C12-triggerred cell death remains unclear. To clarify cell death signaling induced by C12, we examined mouse embryonic fibroblasts (MEFs) deficient in one or more caspases. Our data indicate that, unlike most apoptotic inducers, C12 evokes a novel form of apoptosis in cells, probably through the direct induction of mitochondrial membrane permeabilization. Previous studies indicate that …


Regulation Of The Retinoblastoma Tumor Suppressor By The Novel Ras Effector Nore1a., Thibaut François Barnoud Dec 2015

Regulation Of The Retinoblastoma Tumor Suppressor By The Novel Ras Effector Nore1a., Thibaut François Barnoud

Electronic Theses and Dissertations

Ras is the most frequently mutated oncogene in human cancers. It acts as a critical branch point in signal transduction, regulating numerous downstream effectors involved in cell growth and differentiation. While Ras can activate many growth promoting pathways, it can paradoxically regulate growth inhibitory pathways leading to apoptosis and cell cycle arrest. One of the ways Ras can inhibit the growth of cells is via a family of effectors called the RASSF proteins. RASSF5 (NORE1A) is a tumor suppressor that is frequently inactivated in human tumors by epigenetic mechanisms. NORE1A binds directly to Ras and promotes Ras-induced senescence. We have …


The Ras Effector Nore1a Forms A Tumor Suppressor Complex With Brca1., Nicholas C Nelson Dec 2015

The Ras Effector Nore1a Forms A Tumor Suppressor Complex With Brca1., Nicholas C Nelson

Electronic Theses and Dissertations

Ras proteins function as molecular signaling switches that can stimulate multiple mitogenic pathways in response to extracellular signaling. Oncogenic activation of Ras by structural mutation is a highly transforming event in ~1/3 of human cancers. However, aberrant Ras activation can also promote oncogene-induced senescence. This Ras-induced irreversible growth arrest is a physiological process that acts as a barrier to malignancy. The mechanisms by which Ras drives senescence and how this process is bypassed during Ras-driven transformation remains poorly understood.

Although mutations in the RAS gene are extremely rare in human breast cancer, the Ras signaling pathway is constitutively activated in …