Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Life Sciences

Investigation Of Interactions Between 1,3 Dialkyl Imidazolium Ionic Liquids And Lignocellulosic Polymers, Aparna Annamraju May 2021

Investigation Of Interactions Between 1,3 Dialkyl Imidazolium Ionic Liquids And Lignocellulosic Polymers, Aparna Annamraju

Doctoral Dissertations

Lignocellulosic biomass is a potential energy source for fuels, chemicals and materials production in a sustainable manner. A network of covalent and non-covalent bonds between the three main polymers of biomass, i.e., cellulose, hemicellulose and lignin, results in a compact structure that is resistant to chemical and biological attacks and therefore challenging for the efficient utilization of lignocellulosic biomass. Ionic liquids (ILs) have been reported to disrupt the bonds between these polymers and dissolve biomass at temperatures below 100 ˚C. Research through the years has shown that biomass pretreatment with IL brings out the selective dissolution of biomass polymers and …


Managing Exoelectrogenic Microbial Community Development Through Bioprocess Control For Conversion Of Biomass-Derived Streams, Alex James Lewis Aug 2017

Managing Exoelectrogenic Microbial Community Development Through Bioprocess Control For Conversion Of Biomass-Derived Streams, Alex James Lewis

Doctoral Dissertations

Bioelectrochemical systems are an emerging technology capable of utilizing aqueous waste streams generated during biomass conversion of lignocellulosic feedstocks to produce valuable co-products and thus, have potential to be integrated into biorefineries. In a microbial electrolysis cell, organic compounds are converted to electrons, protons, and CO2 by fermentative and exoelectrogenic bacteria in the anode compartment. By having the ability to extract electrons from waste streams, these systems can treat water while also producing hydrogen, and thus can improve the efficiency of biomass to fuel production by minimizing external hydrogen requirement and enabling water recycle. The overall goal of this …


Enhancing The Sustainability Of Integrated Biofuel Feedstock Production Systems, Amanda Joy Ashworth May 2015

Enhancing The Sustainability Of Integrated Biofuel Feedstock Production Systems, Amanda Joy Ashworth

Doctoral Dissertations

As use of second-generation biofuel crops increases, so do questions about sustainability, particularly their potential to affect fossil energy consumption and greenhouse gas emissions. Nitrogen (N)-fixing legumes interseeded into switchgrass (Panicum virgatum L.) may be an alternative to inorganic fertilizer in forage-feedstock systems. Research herein is divided into four general experiments: I). N replacement and feedstock impacts from legume intercrops and biochar in switchgrass; II). N-fixation rates in intercrop systems; III). impacts of biofuel systems under enhanced climate change; and, IV). projected sustainability of regional switchgrass production. Approaches included: characterization of feedstock/forage quality traits based on legume, biochar and …


Towards A Unification Of Supercomputing, Molecular Dynamics Simulation And Experimental Neutron And X-Ray Scattering Techniques, Benjamin Lindner Dec 2012

Towards A Unification Of Supercomputing, Molecular Dynamics Simulation And Experimental Neutron And X-Ray Scattering Techniques, Benjamin Lindner

Doctoral Dissertations

Molecular dynamics simulation has become an essential tool for scientific discovery and investigation. The ability to evaluate every atomic coordinate for each time instant sets it apart from other methodologies, which can only access experimental observables as an outcome of the atomic coordinates. Here, the utility of molecular dynamics is illustrated by investigating the structure and dynamics of fundamental models of cellulose fibers. For that, a highly parallel code has been developed to compute static and dynamical scattering functions efficiently on modern supercomputing architectures. Using state of the art supercomputing facilities, molecular dynamics code and parallelization strategies, this work also …