Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Life Sciences

Engineering Modularity Of Ester Biosynthesis Across Biological Scales, Hyeongmin Seo May 2021

Engineering Modularity Of Ester Biosynthesis Across Biological Scales, Hyeongmin Seo

Doctoral Dissertations

Metabolic engineering and synthetic biology enable controlled manipulation of whole-cell biocatalysts to produce valuable chemicals from renewable feedstocks in a rapid and efficient manner, helping reduce our reliance on the conventional petroleum-based chemical synthesis. However, strain engineering process is costly and time-consuming that developing economically competitive bioprocess at industrial scale is still challenging. To accelerate the strain engineering process, modular cell engineering has been proposed as an innovative approach that harnesses modularity of metabolism for designing microbial cell factories. It is important to understand biological modularity and to develop design principles for effective implementation of modular cell engineering. In this …


Engineered Proteins As Tools To Understand Ubiquitin Signaling, Lin Hui Chang Dec 2020

Engineered Proteins As Tools To Understand Ubiquitin Signaling, Lin Hui Chang

Doctoral Dissertations

Ubiquitin is a 76 amino acids protein that is evolutionary conserved in eukaryotes. It is an important signaling molecule in a plethora biological events, such as protein degradation, DNA damage response, and transcription. This thesis aims to develop engineered protein as a tool to study ubiquitin signaling. Through targeted mutagenesis and directed evolution, a deubiquitinase is reprogrammed into a transamidase, which lead to the generation of ubiquitinprotein conjugates with discrete ubiquitin linkages through auto-ubiquitination. These ubiquitin-protein conjugates could be used as a model substrate to profile their interaction of different ubiquitin interacting proteins. In addition, using directed evolution and deep …


Engineering Mesothelin-Binding Proteins As Targeted Cancer Diagnostics And Therapeutics, Allison Rita Sirois Dec 2020

Engineering Mesothelin-Binding Proteins As Targeted Cancer Diagnostics And Therapeutics, Allison Rita Sirois

Doctoral Dissertations

Cancer is a significant global health concern; and traditional therapies, including chemotherapeutics, are often simultaneously toxic yet ineffective. There is a critical need to develop targeted cancer therapeutics which specifically inhibit molecules or molecular pathways essential for tumor growth and maintenance. Furthermore, a targeted therapy is only effective when a patient's tumor expresses the molecular target; therefore, companion diagnostics, including molecular imaging agents, are a necessary counterpart of targeted therapies. Mesothelin (MSLN) is a cell surface protein overexpressed in numerous cancers, including triple-negative breast, pancreatic, ovarian, liver, and lung, with limited expression in normal tissues. Aberrant MSLN expression promotes tumor …


Enhancing Nanopore Based Biosensening Technology Using Pore Forming Proteins, Christina M. Chisholm Mar 2019

Enhancing Nanopore Based Biosensening Technology Using Pore Forming Proteins, Christina M. Chisholm

Doctoral Dissertations

Pore forming proteins (PFPs) are membrane channels that are essential for various biological processes. For example, some PFPs act as gatekeepers of the cell, controlling the traffic of ions and macromolecules flowing into and out of cells; while others are involved in causing cell death (Reiner et al., 2012). Our fundamental understanding of PFPs determines our ability to employ these proteins for use in biomedical research and nanopore technology. Given their nanoscale dimensions, reproducibility and functionality these PFPs are widely used in the growing field of nanopore technology, particularly nanopore sensing (Reiner et al., 2012; Feng et al., 2015). These …