Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 20 of 20

Full-Text Articles in Life Sciences

A Comprehensive Benchmarking Study Of Protocols And Sequencing Platforms For 16s Rrna Community Profiling, Rosalinda D’Amore, Umer Zeeshan Ijaz, Melanie Schirmer, John G. Kenny, Richard Gregory, Alistair C. Darby, Migun Shakya Jan 2016

A Comprehensive Benchmarking Study Of Protocols And Sequencing Platforms For 16s Rrna Community Profiling, Rosalinda D’Amore, Umer Zeeshan Ijaz, Melanie Schirmer, John G. Kenny, Richard Gregory, Alistair C. Darby, Migun Shakya

Dartmouth Scholarship

In the last 5 years, the rapid pace of innovations and improvements in sequencing technologies has completely changed the landscape of metagenomic and metagenetic experiments. Therefore, it is critical to benchmark the various methodologies for interrogating the composition of microbial communities, so that we can assess their strengths and limitations. The most common phylogenetic marker for microbial community diversity studies is the 16S ribosomal RNA gene and in the last 10 years the field has moved from sequencing a small number of amplicons and samples to more complex studies where thousands of samples and multiple different gene regions are interrogated. …


The Interrelationships Of Placental Mammals And The Limits Of Phylogenetic Inference, James E. Tarver, Mario Dos Reis, Siavash Mirarab, Raymond J. J. Moran, Sean Parker, Joseph E. O'Reilly, Benjamin L. King, Mary J. O'Connell, Robert J. Asher, Tandy Warnow, Kevin J. Peterson, Philip C.J. Donoghue, Davide Pisani Dec 2015

The Interrelationships Of Placental Mammals And The Limits Of Phylogenetic Inference, James E. Tarver, Mario Dos Reis, Siavash Mirarab, Raymond J. J. Moran, Sean Parker, Joseph E. O'Reilly, Benjamin L. King, Mary J. O'Connell, Robert J. Asher, Tandy Warnow, Kevin J. Peterson, Philip C.J. Donoghue, Davide Pisani

Dartmouth Scholarship

Placental mammals comprise three principal clades: Afrotheria (e.g., elephants and tenrecs), Xenarthra (e.g., armadillos and sloths), and Boreoeutheria (all other placental mammals), the relationships among which are the subject of controversy and a touchstone for debate on the limits of phylogenetic inference. Previous analyses have found support for all three hypotheses, leading some to conclude that this phylogenetic problem might be impossible to resolve due to the compounded effects of incomplete lineage sorting (ILS) and a rapid radiation. Here we show, using a genome scale nucleotide data set, microRNAs, and the reanalysis of the three largest previously published amino acid …


Microbial Diversity Of A Mediterranean Soil And Its Changes After Biotransformed Dry Olive Residue Amendment, José A. Siles, Caio T.C.C Rachid, Inmaculada Sampedro, Inmaculada García-Romera, James M. Tiedje Jul 2014

Microbial Diversity Of A Mediterranean Soil And Its Changes After Biotransformed Dry Olive Residue Amendment, José A. Siles, Caio T.C.C Rachid, Inmaculada Sampedro, Inmaculada García-Romera, James M. Tiedje

Dartmouth Scholarship

The Mediterranean basin has been identified as a biodiversity hotspot, about whose soil microbial diversity little is known. Intensive land use and aggressive management practices are degrading the soil, with a consequent loss of fertility. The use of organic amendments such as dry olive residue (DOR), a waste produced by a two-phase olive-oil extraction system, has been proposed as an effective way to improve soil properties. However, before its application to soil, DOR needs a pre-treatment, such as by a ligninolytic fungal transformation, e.g. Coriolopsis floccosa. The present study aimed to describe the bacterial and fungal diversity in a …


Functional Analysis Of The Aspergillus Nidulans Kinome, Colin P. De Souza, Shahr B. Hashmi, Aysha H. Osmani, Peter Andrews, Carol S. Ringelberg, Jay C. Dunlap, Stephen A. Osmani Mar 2013

Functional Analysis Of The Aspergillus Nidulans Kinome, Colin P. De Souza, Shahr B. Hashmi, Aysha H. Osmani, Peter Andrews, Carol S. Ringelberg, Jay C. Dunlap, Stephen A. Osmani

Dartmouth Scholarship

The filamentous fungi are an ecologically important group of organisms which also have important industrial applications but devastating effects as pathogens and agents of food spoilage. Protein kinases have been implicated in the regulation of virtually all biological processes but how they regulate filamentous fungal specific processes is not understood. The filamentous fungus Aspergillus nidulans has long been utilized as a powerful molecular genetic system and recent technical advances have made systematic approaches to study large gene sets possible. To enhance A. nidulans functional genomics we have created gene deletion constructs for 9851 genes representing 93.3% of the encoding genome. …


Reconstruction Of Family-Level Phylogenetic Relationships Within Demospongiae (Porifera) Using Nuclear Encoded Housekeeping Genes, Malcolm S. Hill, April Hill, Jose Lopez, Kevin J. Peterson Jan 2013

Reconstruction Of Family-Level Phylogenetic Relationships Within Demospongiae (Porifera) Using Nuclear Encoded Housekeeping Genes, Malcolm S. Hill, April Hill, Jose Lopez, Kevin J. Peterson

Dartmouth Scholarship

Background: Demosponges are challenging for phylogenetic systematics because of their plastic and relatively simple morphologies and many deep divergences between major clades. To improve understanding of the phylogenetic relationships within Demospongiae, we sequenced and analyzed seven nuclear housekeeping genes involved in a variety of cellular functions from a diverse group of sponges.

Methodology/Principal Findings: We generated data from each of the four sponge classes (i.e., Calcarea, Demospongiae, Hexactinellida, and Homoscleromorpha), but focused on family-level relationships within demosponges. With data for 21 newly sampled families, our Maximum Likelihood and Bayesian-based approaches recovered previously phylogenetically defined taxa: Keratosap, Myxospongiaep, Spongillidap, Haploscleromorphap (the …


A Novel Method For Comparative Analysis Of Retinal Specialization Traits From Topographic Maps, Bret A. Moore, Jason M. Kamilar, Shaun P. Collin, Olaf R. P. Bininda-Emonds, Nathaniel J. Dominy, Margaret I. Hall, Christopher P. Hessy, Sonke Johnsen, Thomas J. Lisney, Ellis R. Loew, Gillian Moritz Nov 2012

A Novel Method For Comparative Analysis Of Retinal Specialization Traits From Topographic Maps, Bret A. Moore, Jason M. Kamilar, Shaun P. Collin, Olaf R. P. Bininda-Emonds, Nathaniel J. Dominy, Margaret I. Hall, Christopher P. Hessy, Sonke Johnsen, Thomas J. Lisney, Ellis R. Loew, Gillian Moritz

Dartmouth Scholarship

Abstract Vertebrates possess different types of retinal specializations that vary in number, size, shape, and position in the retina. This diversity in retinal configuration has been revealed through topographic maps, which show variations in neuron density across the retina. Although topographic maps of about 300 vertebrates are available, there is no method for characterizing retinal traits quantitatively. Our goal is to present a novel method to standardize information on the position of the retinal specializations and changes in retinal ganglion cell (RGC) density across the retina from published topographic maps. We measured the position of the retinal specialization using two …


Arabidopsis Bhlh100 And Bhlh101 Control Iron Homeostasis Via A Fit-Independent Pathway, Alicia B. Sivitz, Victor Hermand, Catherine Curie, Grégory Vert Sep 2012

Arabidopsis Bhlh100 And Bhlh101 Control Iron Homeostasis Via A Fit-Independent Pathway, Alicia B. Sivitz, Victor Hermand, Catherine Curie, Grégory Vert

Dartmouth Scholarship

Iron deficiency induces a complex set of responses in plants, including developmental and physiological changes, to increase iron uptake from soil. In Arabidopsis, many transporters involved in the absorption and distribution of iron have been identified over the past decade. However, little is known about the signaling pathways and networks driving the various responses to low iron. Only the basic helix–loop–helix (bHLH) transcription factor FIT has been shown to control the expression of the root iron uptake machinery genes FRO2 and IRT1. Here, we characterize the biological role of two other iron-regulated transcription factors, bHLH100 and bHLH101, in iron homeostasis. …


Evolution Of Plant Sucrose Uptake Transporters, Anke Reinders, Alicia B. Sivitz, John M. Ward Feb 2012

Evolution Of Plant Sucrose Uptake Transporters, Anke Reinders, Alicia B. Sivitz, John M. Ward

Dartmouth Scholarship

In angiosperms, sucrose uptake transporters (SUTs) have important functions especially in vascular tissue. Here we explore the evolutionary origins of SUTs by analysis of angiosperm SUTs and homologous transporters in a vascular early land plant, Selaginella moellendorffii, and a non-vascular plant, the bryophyte Physcomitrella patens, the charophyte algae Chlorokybus atmosphyticus, several red algae and fission yeast, Schizosaccharomyces pombe. Plant SUTs cluster into three types by phylogenetic analysis. Previous studies using angiosperms had shown that types I and II are localized to the plasma membrane while type III SUTs are associated with vacuolar membrane. SUT homologs were …


Episodic Radiations In The Fly Tree Of Life, Brian M. Wiegmann, Michelle D. Trautwein, Isaac S. Winkler, Norman B. Barr, Jung-Wook Kim, Christine Lambkin, Matthew Bertone, Brian Cassel, Keith Bayless, Alysha Heimberg Apr 2011

Episodic Radiations In The Fly Tree Of Life, Brian M. Wiegmann, Michelle D. Trautwein, Isaac S. Winkler, Norman B. Barr, Jung-Wook Kim, Christine Lambkin, Matthew Bertone, Brian Cassel, Keith Bayless, Alysha Heimberg

Dartmouth Scholarship

Flies are one of four superradiations of insects (along with beetles, wasps, and moths) that account for the majority of animal life on Earth. Diptera includes species known for their ubiquity (Musca domestica house fly), their role as pests (Anopheles gambiae malaria mosquito), and their value as model organisms across the biological sciences (Drosophila melanogaster). A resolved phylogeny for flies provides a framework for genomic, developmental, and evolutionary studies by facilitating comparisons across model organisms, yet recent research has suggested that fly relationships have been obscured by multiple episodes of rapid diversification. We provide a phylogenomic …


Cellulose- And Xylan-Degrading Thermophilic Anaerobic Bacteria From Biocompost, M. V. Sizova, J. A. Izquierdo, N. S. Panikov, L. R. Lynd Feb 2011

Cellulose- And Xylan-Degrading Thermophilic Anaerobic Bacteria From Biocompost, M. V. Sizova, J. A. Izquierdo, N. S. Panikov, L. R. Lynd

Dartmouth Scholarship

Nine thermophilic cellulolytic clostridial isolates and four other noncellulolytic bacterial isolates were isolated from self-heated biocompost via preliminary enrichment culture on microcrystalline cellulose. All cellulolytic isolates grew vigorously on cellulose, with the formation of either ethanol and acetate or acetate and formate as principal fermentation products as well as lactate and glycerol as minor products. In addition, two out of nine cellulolytic strains were able to utilize xylan and pretreated wood with roughly the same efficiency as for cellulose. The major products of xylan fermentation were acetate and formate, with minor contributions of lactate and ethanol. Phylogenetic analyses of 16S …


Micrornas Reveal The Interrelationships Of Hagfish, Lampreys, And Gnathostomes And The Nature Of The Ancestral Vertebrate, Alysha M. Heimberg, Richard Cowper-Sal{Middle Dot}Lari, Marie Semon, Philip C. J. Donoghue, Kevin J. Peterson Nov 2010

Micrornas Reveal The Interrelationships Of Hagfish, Lampreys, And Gnathostomes And The Nature Of The Ancestral Vertebrate, Alysha M. Heimberg, Richard Cowper-Sal{Middle Dot}Lari, Marie Semon, Philip C. J. Donoghue, Kevin J. Peterson

Dartmouth Scholarship

Hagfish and lampreys are the only living representatives of the jawless vertebrates (agnathans), and compared with jawed vertebrates (gnathostomes), they provide insight into the embryology, genomics, and body plan of the ancestral vertebrate. However, this insight has been obscured by controversy over their interrelationships. Morphological cladistic analyses have identified lampreys and gnathostomes as closest relatives, whereas molecular phylogenetic studies recover a monophyletic Cyclostomata (hagfish and lampreys as closest relatives). Here, we show through deep sequencing of small RNA libraries, coupled with genomic surveys, that Cyclostomata is monophyletic: hagfish and lampreys share 4 unique microRNA families, 15 unique paralogues of more …


Diversity Of Bacteria And Glycosyl Hydrolase Family 48 Genes In Cellulolytic Consortia Enriched From Thermophilic Biocompost, Javier A. Izquierdo, Maria V. Sizova, Lee R. Lynd Mar 2010

Diversity Of Bacteria And Glycosyl Hydrolase Family 48 Genes In Cellulolytic Consortia Enriched From Thermophilic Biocompost, Javier A. Izquierdo, Maria V. Sizova, Lee R. Lynd

Dartmouth Scholarship

The enrichment from nature of novel microbial communities with high cellulolytic activity is useful in the identification of novel organisms and novel functions that enhance the fundamental understanding of microbial cellulose degradation. In this work we identify predominant organisms in three cellulolytic enrichment cultures with thermophilic compost as an inoculum. Community structure based on 16S rRNA gene clone libraries featured extensive representation of clostridia from cluster III, with one cluster sharing as little as 73% sequence similarity with the closest known relative. In all, 14 new GHF48 gene sequences were added to the known diversity of 35 genes from cultured …


The Tempo And Mode Of Three‐Dimensional Morphological Evolution In Male Reproductive Structures, Mark A. Mcpeek, Li Shen, John Z. Torrey, Hany Farid Mar 2008

The Tempo And Mode Of Three‐Dimensional Morphological Evolution In Male Reproductive Structures, Mark A. Mcpeek, Li Shen, John Z. Torrey, Hany Farid

Dartmouth Scholarship

Various evolutionary forces may shape the evolution of traits that influence the mating decisions of males and females. Phe- notypic traits that males and females use to judge the species identify of potential mates should evolve in a punctuated fashion, changing significantly at the time of speciation but changing little between speciation events. In contrast, traits experiencing sexual selection or sexually antagonistic interactions are generally expected to change continuously over time because of the directional selection pressures imposed on one sex by the actions of the other. To test these hy- potheses, we used spherical harmonic representations of the shapes …


Micrornas And The Advent Of Vertebrate Morphological Complexity, Alysha M. Heimberg, Lorenzo F. Sempere, Vanessa N. Moy, Phillip C. J. Donoghue, Kevin J. Peterson Feb 2008

Micrornas And The Advent Of Vertebrate Morphological Complexity, Alysha M. Heimberg, Lorenzo F. Sempere, Vanessa N. Moy, Phillip C. J. Donoghue, Kevin J. Peterson

Dartmouth Scholarship

The causal basis of vertebrate complexity has been sought in genome duplication events (GDEs) that occurred during the emergence of vertebrates, but evidence beyond coincidence is wanting. MicroRNAs (miRNAs) have recently been identified as a viable causal factor in increasing organismal complexity through the action of these ≈22-nt noncoding RNAs in regulating gene expression. Because miRNAs are continuously being added to animalian genomes, and, once integrated into a gene regulatory network, are strongly conserved in primary sequence and rarely secondarily lost, their evolutionary history can be accurately reconstructed. Here, using a combination of Northern analyses and genomic searches, we show …


Gene Response Profiles For Daphnia Pulex Exposed To The Environmental Stressor Cadmium Reveals Novel Crustacean Metallothioneins, Joseph R. Shaw, John K. Colbourne, Jennifer C. Davey, Stephen P. Glaholt, Thomas H. Hampton, Celia Y. Chen, Carol L. Folt, Joshua W. Hamilton Dec 2007

Gene Response Profiles For Daphnia Pulex Exposed To The Environmental Stressor Cadmium Reveals Novel Crustacean Metallothioneins, Joseph R. Shaw, John K. Colbourne, Jennifer C. Davey, Stephen P. Glaholt, Thomas H. Hampton, Celia Y. Chen, Carol L. Folt, Joshua W. Hamilton

Dartmouth Scholarship

Genomic research tools such as microarrays are proving to be important resources to study the complex regulation of genes that respond to environmental perturbations. A first generation cDNA microarray was developed for the environmental indicator species Daphnia pulex, to identify genes whose regulation is modulated following exposure to the metal stressor cadmium. Our experiments revealed interesting changes in gene transcription that suggest their biological roles and their potentially toxicological features in responding to this important environmental contaminant.


The Kinesin-13 Proteins Kif2a, Kif2b, And Kif2c/Mcak Have Distinct Roles During Mitosis In Human Cells, Amity L. Manning, Neil J. Ganem, Samuel F. Bakhoum, Michael Wagenbach, Linda Wordeman, Duane A. Compton May 2007

The Kinesin-13 Proteins Kif2a, Kif2b, And Kif2c/Mcak Have Distinct Roles During Mitosis In Human Cells, Amity L. Manning, Neil J. Ganem, Samuel F. Bakhoum, Michael Wagenbach, Linda Wordeman, Duane A. Compton

Dartmouth Scholarship

The human genome has three unique genes coding for kinesin-13 proteins called Kif2a, Kif2b, and MCAK (Kif2c). Kif2a and MCAK have documented roles in mitosis, but the function of Kif2b has not been defined. Here, we show that Kif2b is expressed at very low levels in cultured cells and that GFP-Kif2b localizes predominately to centrosomes and midbodies, but also to spindle microtubules and transiently to kinetochores. Kif2b-deficient cells assemble monopolar or disorganized spindles. Chromosomes in Kif2b-deficient cells show typical kinetochore-microtubule attachments, but the velocity of movement is reduced ∼80% compared with control cells. Some Kif2b-deficient cells attempt anaphase, but the …


Origin Of The Eumetazoa: Testing Ecological Predictions Of Molecular Clocks Against The Proterozoic Fossil Record, Kevin J. Peterson, Nicholas J. Butterfield Jul 2005

Origin Of The Eumetazoa: Testing Ecological Predictions Of Molecular Clocks Against The Proterozoic Fossil Record, Kevin J. Peterson, Nicholas J. Butterfield

Dartmouth Scholarship

Molecular clocks have the potential to shed light on the timing of early metazoan divergences, but differing algorithms and calibration points yield conspicuously discordant results. We argue here that competing molecular clock hypotheses should be testable in the fossil record, on the principle that fundamentally new grades of animal organization will have ecosystem-wide impacts. Using a set of seven nuclear-encoded protein sequences, we demonstrate the paraphyly of Porifera and calculate sponge/eumetazoan and cnidarian/bilaterian divergence times by using both distance [minimum evolution (ME)] and maximum likelihood (ML) molecular clocks; ME brackets the appearance of Eumetazoa between 634 and 604 Ma, whereas …


Phylogenetic Analysis Of The Formin Homology 2 Domain, Henry N. Higgs, Kevin J. Peterson Oct 2004

Phylogenetic Analysis Of The Formin Homology 2 Domain, Henry N. Higgs, Kevin J. Peterson

Dartmouth Scholarship

Formin proteins are key regulators of eukaryotic actin filament assembly and elongation, and many species possess multiple formin isoforms. A nomenclature system based on fundamental features would be desirable, to aid the rapid identification and characterization of novel formins. In this article, we attempt to systematize the formin family by performing phylogenetic analyses of the formin homology 2 (FH2) domain, an independently folding region common to all formins, which alone can influence actin dynamics. Through database searches, we identify 101 FH2 domains from 26 eukaryotic species, including 15 in mice. Sequence alignments reveal a highly conserved yeast-specific insert in the …


Pf15p Is The Chlamydomonas Homologue Of The Katanin P80 Subunit And Is Required For Assembly Of Flagellar Central Microtubules, Erin E. Dymek, Paul A. Lefebvre, Elizabeth F. Smith Aug 2004

Pf15p Is The Chlamydomonas Homologue Of The Katanin P80 Subunit And Is Required For Assembly Of Flagellar Central Microtubules, Erin E. Dymek, Paul A. Lefebvre, Elizabeth F. Smith

Dartmouth Scholarship

Numerous studies have indicated that the central apparatus plays a significant role in regulating flagellar motility, yet little is known about how the central pair of microtubules or their associated projections assemble. Several Chlamydomonas mutants are defective in central apparatus assembly. For example, mutant pf15 cells have paralyzed flagella that completely lack the central pair of microtubules. We have cloned the wild-type PF15 gene and confirmed its identity by rescuing the motility and ultrastructural defects in two pf15 alleles, the original pf15a mutant and a mutant generated by insertional mutagenesis. Database searches using the 798-amino-acid polypeptide predicted from the complete …


Estimating Metazoan Divergence Times With A Molecular Clock, Kevin J. Peterson, Jessica B. Lyons, Kristin S. Nowak, Carter M. Takacs, Matthew J. Wargo, Mark A. Mcpeek Apr 2004

Estimating Metazoan Divergence Times With A Molecular Clock, Kevin J. Peterson, Jessica B. Lyons, Kristin S. Nowak, Carter M. Takacs, Matthew J. Wargo, Mark A. Mcpeek

Dartmouth Scholarship

Accurately dating when the first bilaterally symmetrical animals arose is crucial to our understanding of early animal evolution. The earliest unequivocally bilaterian fossils are 555 million years old. In contrast, molecular-clock analyses calibrated by using the fossil record of vertebrates estimate that vertebrates split from dipterans (Drosophila) 900 million years ago (Ma). Nonetheless, comparative genomic analyses suggest that a significant rate difference exists between vertebrates and dipterans, because the percentage difference between the genomes of mosquito and fly is greater than between fish and mouse, even though the vertebrate divergence is almost twice that of the dipteran. Here we show …