Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Life Sciences

Modeling The Seasonal Cycle Of Iron And Carbon Fluxes In The Amundsen Sea Polynya, Antarctica, P. St-Laurent, P. L. Yager, R. M. Sherrell, H. Oliver, M. S. Dinniman, S. E. Stammerjohn Jan 2019

Modeling The Seasonal Cycle Of Iron And Carbon Fluxes In The Amundsen Sea Polynya, Antarctica, P. St-Laurent, P. L. Yager, R. M. Sherrell, H. Oliver, M. S. Dinniman, S. E. Stammerjohn

CCPO Publications

The Amundsen Sea Polynya (ASP) is distinguished by having the highest net primary production per unit area in the coastal Antarctic. Recent studies have related this high productivity to the presence of fast-melting ice shelves, but the mechanisms involved are not well understood. In this study we describe the first numerical model of the ASP to represent explicitly the ocean-ice interactions, nitrogen and iron cycles, and the coastal circulation at high resolution. The study focuses on the seasonal cycle of iron and carbon, and the results are broadly consistent with field observations collected during the summer of 2010–2011. The simulated …


Circulation, Mixing And The Distribution Of Remineralized Nutrients, Larry P. Atkinson, John Huthnance, Jose L. Blanco Jan 2005

Circulation, Mixing And The Distribution Of Remineralized Nutrients, Larry P. Atkinson, John Huthnance, Jose L. Blanco

CCPO Publications

No abstract provided.


Modeling Nutrient And Plankton Processes In The California Coastal Transition Zone: 3. Lagrangian Drifters, J. R. Moisan, Eileen E. Hofmann Oct 1996

Modeling Nutrient And Plankton Processes In The California Coastal Transition Zone: 3. Lagrangian Drifters, J. R. Moisan, Eileen E. Hofmann

CCPO Publications

Two types of numerical Lagrangian drifter experiments were conducted, using a set of increasingly complex and sophisticated models, to investigate the processes associated with the plankton distributions in the California coastal transition zone (CTZ). The first experiment used a one-dimensional (1-D; vertical) time-dependent physical-bio-optical model, which contained a nine-component food web. Vertical velocities, along the track of simulated Lagrangian drifters, derived from a three-dimensional (3-D), primitive equation circulation model developed to simulate the flow observed within the CTZ; were used to parameterize the upwelling and downwelling processes. The second experiment used 880 simulated Lagrangian drifters from a 3-D primitive equation …