Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 7 of 7

Full-Text Articles in Life Sciences

Increasing The Resilience Of Plant Immunity To A Warming Climate, Jong Hum Kim, Christian Castroverde, Shuai Huang, Chao Li, Richard Hilleary, Adam Seroka, Reza Sohrabi, Diana Medina-Yerena, Bethany Huot, Jie Wang, Sharon Marr, Mary Wildermuth, Tao Chen, John Macmicking, Sheng Yang He Jun 2022

Increasing The Resilience Of Plant Immunity To A Warming Climate, Jong Hum Kim, Christian Castroverde, Shuai Huang, Chao Li, Richard Hilleary, Adam Seroka, Reza Sohrabi, Diana Medina-Yerena, Bethany Huot, Jie Wang, Sharon Marr, Mary Wildermuth, Tao Chen, John Macmicking, Sheng Yang He

Biology Faculty Publications

Extreme weather conditions associated with climate change affect many aspects of plant and animal life, including the response to infectious diseases. Production of salicylic acid (SA), a central plant defence hormone, is particularly vulnerable to suppression by short periods of hot weather above the normal plant growth temperature range via an unknown mechanism. Here we show that suppression of SA production in Arabidopsis thaliana at 28 °C is independent of PHYTOCHROME B (phyB) and EARLY FLOWERING 3 (ELF3), which regulate thermo-responsive plant growth and development. Instead, we found that formation of GUANYLATE BINDING PROTEIN-LIKE 3 (GBPL3) defence-activated biomolecular condensates (GDACs) …


Salicylic Acid And N-Hydroxypipecolic Acid At The Fulcrum Of The Plant Immunity-Growth Equilibrium, Alyssa Shields, Vanessa Shivnauth, Christian Danve M. Castroverde Mar 2022

Salicylic Acid And N-Hydroxypipecolic Acid At The Fulcrum Of The Plant Immunity-Growth Equilibrium, Alyssa Shields, Vanessa Shivnauth, Christian Danve M. Castroverde

Biology Faculty Publications

Salicylic acid (SA) and N-hydroxypipecolic acid (NHP) are two central plant immune signals involved in both resistance at local sites of pathogen infection (basal resistance) and at distal uninfected sites after primary infection (systemic acquired resistance). Major discoveries and advances have led to deeper understanding of their biosynthesis and signaling during plant defense responses. In addition to their well-defined roles in immunity, recent research is emerging on their direct mechanistic impacts on plant growth and development. In this review, we will first provide an overview of how SA and NHP regulate local and systemic immune responses in plants. We …


Cbp60-Db: An Alphafold-Predicted Plant Kingdom-Wide Database Of The Calmodulin-Binding Protein 60 (Cbp60) Protein Family With A Novel Structural Clustering Algorithm, Keaun Amani, Vanessa Shivnauth, Christian Castroverde Jan 2022

Cbp60-Db: An Alphafold-Predicted Plant Kingdom-Wide Database Of The Calmodulin-Binding Protein 60 (Cbp60) Protein Family With A Novel Structural Clustering Algorithm, Keaun Amani, Vanessa Shivnauth, Christian Castroverde

Biology Faculty Publications

Molecular genetic analyses in the model species Arabidopsis thaliana have demonstrated the major roles of different CAM-BINDING PROTEIN 60 (CBP60) proteins in growth, stress signaling, and immune responses. Prominently, CBP60g and SARD1 are paralogous CBP60 transcription factors that regulate numerous components of the immune system, such as cell surface and intracellular immune receptors, MAP kinases, WRKY transcription factors, and biosynthetic enzymes for immunity-activating metabolites salicylic acid (SA) and N-hydroxypipecolic acid (NHP). However, their function, regulation and diversification in most species remain unclear. Here we have created CBP60-DB, a structural and bioinformatic database that comprehensively characterized 1052 CBP60 gene homologs …


Salicylic Acid: A Key Regulator Of Redox Signalling 1 And Plant Immunity, Mohd Saleem, Qazi Fariddudin, Christian Castroverde Oct 2021

Salicylic Acid: A Key Regulator Of Redox Signalling 1 And Plant Immunity, Mohd Saleem, Qazi Fariddudin, Christian Castroverde

Biology Faculty Publications

In plants, the reactive oxygen species (ROS) formed during normal conditions are essential in regulating several processes, like stomatal physiology, pathogen immunity and developmental signaling. However, biotic and abiotic stresses can cause ROS over-accumulation leading to oxidative stress. Therefore, a suitable equilibrium is vital for redox homeostasis in plants, and there have been major advances in this research arena. Salicylic acid (SA) is known as a chief regulator of ROS; however, the underlying mechanisms remain largely unexplored. SA plays an important role in establishing the hypersensitive response (HR) and systemic acquired resistance (SAR). This is underpinned by a robust and …


Temperature Regulation Of Plant Hormone Signaling During Stress And Development, Christian Castroverde, Damaris Dina Jun 2021

Temperature Regulation Of Plant Hormone Signaling During Stress And Development, Christian Castroverde, Damaris Dina

Biology Faculty Publications

Global climate change has broad-ranging impacts on the natural environment and human civilization. Increasing average temperatures along with more frequent heat waves collectively have negative effects on cultivated crops in agricultural sectors and wild species in natural ecosystems. These aberrantly hot temperatures, together with cold stress, represent major abiotic stresses to plants. Molecular and physiological responses to high and low temperatures are intricately linked to the regulation of important plant hormones. In this review, we shall highlight our current understanding of how changing temperatures regulate plant hormone pathways during immunity, stress responses and development. This article will present an overview …


Mechanistic Insights Into Strigolactone Biosynthesis, Signaling And Regulation During Plant Growth And Development, Kaiser Iqbal Wani, Andleeb Zehra, Sadaf Choudhary, M Naeem, M. Masroor A. Khan, Christian Danve Castroverde, Tariq Aftab Oct 2020

Mechanistic Insights Into Strigolactone Biosynthesis, Signaling And Regulation During Plant Growth And Development, Kaiser Iqbal Wani, Andleeb Zehra, Sadaf Choudhary, M Naeem, M. Masroor A. Khan, Christian Danve Castroverde, Tariq Aftab

Biology Faculty Publications

Strigolactones (SLs) constitute a group of carotenoid-derived phytohormones with butenolide moieties. These hormones are involved in various functions, including regulation of secondary growth, shoot branching and hypocotyl elongation, and stimulation of seed germination. SLs also control hyphal branching of arbuscular mycorrhizal (AM) fungi, and mediate responses to both abiotic and biotic cues. Most of these functions stem from the interplay of SLs with other hormones, enabling plants to appropriately respond to changing environmental conditions. This dynamic interplay provides opportunities for phytohormones to modulate and augment one another. In this article, we review our current mechanistic understanding of SL biosynthesis, receptors …


A Stimulatory Role For Cytokinin In The Arbuscular Mycorrhizal Symbiosis Of Pea, Dane M. Goh, Marco Cosme, Anna B. Kislala, Samantha Mulholland, Zakaria M.F. Said, Lukáš Spíchal, R.J. Neil Emery, Stéphane Declerck, Frédérique C. Guinel Mar 2019

A Stimulatory Role For Cytokinin In The Arbuscular Mycorrhizal Symbiosis Of Pea, Dane M. Goh, Marco Cosme, Anna B. Kislala, Samantha Mulholland, Zakaria M.F. Said, Lukáš Spíchal, R.J. Neil Emery, Stéphane Declerck, Frédérique C. Guinel

Biology Faculty Publications

The arbuscular mycorrhizal (AM) symbiosis between terrestrial plants and AM fungi is regulated by plant hormones. For most of these, a role has been clearly assigned in this mutualistic interaction; however, there are still contradictory reports for cytokinin (CK). Here, pea plants, the wild type (WT) cv. Sparkle and its mutant E151 (Pssym15), were inoculated with the AM fungus Rhizophagus irregularis. E151 has previously been characterized as possessing high CK levels in non-mycorrhizal (myc-) roots and exhibiting high number of fungal structures in mycorrhizal (myc+) roots. Myc- and myc+ plants were …