Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Life Sciences

Human Rickettsial Pathogen Modulates Arthropod Organic Anion Transporting Polypeptide And Tryptophan Pathway For Its Survival In Ticks, Vikas Taank, Shovan Dutta, Amrita Dasgupta, Durland Fish, John F. Anderson, Hameeda Sultana, Girish Neelakanta Oct 2017

Human Rickettsial Pathogen Modulates Arthropod Organic Anion Transporting Polypeptide And Tryptophan Pathway For Its Survival In Ticks, Vikas Taank, Shovan Dutta, Amrita Dasgupta, Durland Fish, John F. Anderson, Hameeda Sultana, Girish Neelakanta

Biological Sciences Faculty Publications

The black-legged tick Ixodes scapularis transmits the human anaplasmosis agent, Anaplasma phagocytophilum. In this study, we show that A. phagocytophilum specifically up-regulates I. scapularis organic anion transporting polypeptide, isoatp4056 and kynurenine amino transferase (kat), a gene involved in the production of tryptophan metabolite xanthurenic acid (XA), for its survival in ticks. RNAi analysis revealed that knockdown of isoatp4056 expression had no effect on A. phagocytophilum acquisition from the murine host but affected the bacterial survival in tick cells. Knockdown of the expression of kat mRNA alone or in combination with isoatp4056 mRNA significantly affected A. phagocytophilum survival …


Microbial Invasion Vs. Tick Immune Regulation, Daniel E. Sonenshine, Kevin R. Macaluso Sep 2017

Microbial Invasion Vs. Tick Immune Regulation, Daniel E. Sonenshine, Kevin R. Macaluso

Biological Sciences Faculty Publications

Ticks transmit a greater variety of pathogenic agents that cause disease in humans and animals than any other haematophagous arthropod, including Lyme disease, Rocky Mountain spotted fever, human granulocytic anaplasmosis, babesiosis, tick-borne encephalitis, Crimean Congo haemorhagic fever, and many others (Gulia-Nuss et al., 2016). Although diverse explanations have been proposed to explain their remarkable vectorial capacity, among the most important are their blood feeding habit, their long term off-host survival, the diverse array of bioactive molecules that disrupt the host's natural hemostatic mechanisms, facilitate blood flow, pain inhibitors, and minimize inflammation to prevent immune rejection (Hajdušek et al., 2013). Moreover, …


Ticks Elicit Variable Fibrinogenolytic Activities Upon Feeding On Hosts With Different Immune Backgrounds, Ashish Vora, Vikas Taank, John F. Anderson, Durland Fish, Daniel E. Sonenshine, John D. Catravas, Hameeda Sultana, Girish Neelakanta Mar 2017

Ticks Elicit Variable Fibrinogenolytic Activities Upon Feeding On Hosts With Different Immune Backgrounds, Ashish Vora, Vikas Taank, John F. Anderson, Durland Fish, Daniel E. Sonenshine, John D. Catravas, Hameeda Sultana, Girish Neelakanta

Biological Sciences Faculty Publications

Ticks secrete several anti-hemostatic factors in their saliva to suppress the host innate and acquired immune defenses against infestations. Using Ixodes scapularis ticks and age-matched mice purchased from two independent commercial vendors with two different immune backgrounds as a model, we show that ticks fed on immunodeficient animals demonstrate decreased fibrinogenolytic activity in comparison to ticks fed on immunocompetent animals. Reduced levels of D-dimer (fibrin degradation product) were evident in ticks fed on immunodeficient animals in comparison to ticks fed on immunocompetent animals. Increased engorgement weights were noted for ticks fed on immunodeficient animals in comparison to ticks fed on …


Adaptation To Blue Light In Marine Synechococcus Requires Mpeu, An Enzyme With Similarity To Phycoerythrobilin Lyase Isomerases, Wendy M. Schluchter, Rania Mohamed Mahmoud, Joseph Sanfilippo, Adam A. Nguyen, Johann A. Strnat, Frédéric Partensky, Laurence Garczarek, Nabil Kassem, David M. Kehoe Feb 2017

Adaptation To Blue Light In Marine Synechococcus Requires Mpeu, An Enzyme With Similarity To Phycoerythrobilin Lyase Isomerases, Wendy M. Schluchter, Rania Mohamed Mahmoud, Joseph Sanfilippo, Adam A. Nguyen, Johann A. Strnat, Frédéric Partensky, Laurence Garczarek, Nabil Kassem, David M. Kehoe

Biological Sciences Faculty Publications

Marine Synechococcus has successfully adapted to environments with different light colors, which likely contributes to this genus being the second most abundant group of microorganisms worldwide. Populations of Synechococcus that grow in deep, blue ocean waters contain large amounts of the blue-light absorbing chromophore phycourobilin (PUB) in their light harvesting complexes (phycobilisomes). Here, we show that all Synechococcus strains adapted to blue light possess a gene called mpeU. MpeU is structurally similar to phycobilin lyases, enzymes that ligate chromophores to phycobiliproteins. Interruption of mpeU caused a reduction in PUB content, impaired phycobilisome assembly and reduced growth rate more strongly in …