Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Life Sciences

Public Discussion Of Anthrax On Twitter: Using Machine Learning To Identify Relevant Topics And Events, Michele Miller, William Lee Romine, Terry L. Oroszi Jun 2021

Public Discussion Of Anthrax On Twitter: Using Machine Learning To Identify Relevant Topics And Events, Michele Miller, William Lee Romine, Terry L. Oroszi

Biological Sciences Faculty Publications

Background: Social media allows researchers to study opinions and reactions to events in real time. One area needing more study is anthrax-related events. A computational framework that utilizes machine learning techniques was created to collect tweets discussing anthrax, further categorize them as relevant by the month of data collection, and detect discussions on anthrax-related events. Objective: The objective of this study was to detect discussions on anthrax-related events and to determine the relevance of thetweets and topics of discussion over 12 months of data collection. Methods: This is an infoveillance study, using tweets in English containing the keyword “Anthrax” and …


Advancing Cyanobacteria Biomass Estimation From Hyperspectral Observations: Demonstrations With Hico And Prisma Imagery, Ryan E. O'Shea, Nima Pahlevan, Brandon Smith, Mariano Bresciani, Todd Egerton, Claudia Giardino, Lin Li, Tim Moore, Antonio Ruiz-Verdu, Steve Ruberg, Stefan G.H. Simis, Richard Stumpf, Diana Vaičiūtė Jan 2021

Advancing Cyanobacteria Biomass Estimation From Hyperspectral Observations: Demonstrations With Hico And Prisma Imagery, Ryan E. O'Shea, Nima Pahlevan, Brandon Smith, Mariano Bresciani, Todd Egerton, Claudia Giardino, Lin Li, Tim Moore, Antonio Ruiz-Verdu, Steve Ruberg, Stefan G.H. Simis, Richard Stumpf, Diana Vaičiūtė

Biological Sciences Faculty Publications

Retrieval of the phycocyanin concentration (PC), a characteristic pigment of, and proxy for, cyanobacteria biomass, from hyperspectral satellite remote sensing measurements is challenging due to uncertainties in the remote sensing reflectance (∆Rrs) resulting from atmospheric correction and instrument radiometric noise. Although several individual algorithms have been proven to capture local variations in cyanobacteria biomass in specific regions, their performance has not been assessed on hyperspectral images from satellite sensors. Our work leverages a machine-learning model, Mixture Density Networks (MDNs), trained on a large (N = 939) dataset of collocated in situ chlorophyll-a concentrations (Chla), …