Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Life Sciences

Intradermal Delivery Of Plasmid Vegf(165) By Electroporation Promotes Wound Healing, Bernadette Ferraro, Yolmari Cruz, Domenico Coppola, Richard Heller Jan 2009

Intradermal Delivery Of Plasmid Vegf(165) By Electroporation Promotes Wound Healing, Bernadette Ferraro, Yolmari Cruz, Domenico Coppola, Richard Heller

Bioelectrics Publications

Skin flaps are extensively used in reconstructive surgeries to repair large defects and deep wounds, but severe ischemia and necrosis often results in loss of the transplanted tissue. Thus, skin flap models are often used to study the biology of healing and necrosis of acute ischemic wounds. Delivery of exogenous vascular endothelial growth factor (VEGF) to areas of ischemia has shown promise for promoting therapeutic angiogenesis, but its expression must be tightly regulated to avoid adverse effects. In this study, plasmid DNA encoding VEGF165 (pVEGF) was delivered to the ischemic skin of a rat skin flap model by intradermal …


Electroporation For The Delivery Of Dna-Based Vaccines And Immunotherapeutics: Current Clinical Developments, Angela M. Bodles-Brakhop, Richard Heller, Ruxandra Draghia-Akli Jan 2009

Electroporation For The Delivery Of Dna-Based Vaccines And Immunotherapeutics: Current Clinical Developments, Angela M. Bodles-Brakhop, Richard Heller, Ruxandra Draghia-Akli

Bioelectrics Publications

Electroporation (EP) has been used in basic research for the past 25 years to aid in the transfer of DNA into cells in vitro. EP in vivo enhances transfer of DNA vaccines and therapeutic plasmids to the skin, muscle, tumors, and other tissues resulting in high levels of expression, often with serological and clinical benefits. the recent interest in nonviral gene transfer as treatment options for a vast array of conditions has resulted in the refinement and optimization of EP technology. current research has revealed that EP can be successfully used in many species, including humans. clinical trials are …


A New Pulsed Electric Field Therapy For Melanoma Disrupts The Tumor's Blood Supply And Causes Complete Remission Without Recurrence, Richard Nuccitelli, Xinhua Chen, Andrei G. Pakhomov, Wallace H. Baldwin, Saleh Sheikh, Jennifer L. Pomicter, Wei Ren, Chris Osgood, R. James Swanson, Juergen F. Kolb, Stephen J. Beebe, Karl H. Schoenbach Jan 2009

A New Pulsed Electric Field Therapy For Melanoma Disrupts The Tumor's Blood Supply And Causes Complete Remission Without Recurrence, Richard Nuccitelli, Xinhua Chen, Andrei G. Pakhomov, Wallace H. Baldwin, Saleh Sheikh, Jennifer L. Pomicter, Wei Ren, Chris Osgood, R. James Swanson, Juergen F. Kolb, Stephen J. Beebe, Karl H. Schoenbach

Bioelectrics Publications

We have discovered a new, ultrafast therapy for treating skin cancer that is extremely effective with a total electric field exposure time of only 180 mu sec. The application of 300 high-voltage (40 kV/cm), ultrashort (300 nsec) electrical pulses to murine melanomas in vivo triggers both necrosis and apoptosis, resulting in complete tumor remission within an average of 47 days in the 17 animals treated. None of these melanomas recurred during a 4-month period after the initial melanoma had disappeared. These pulses generate small, long-lasting, rectifying nanopores in the plasma membrane of exposed cells, resulting in increased membrane permeability to …


Regulation Of Intracellular Calcium Concentration By Nanosecond Pulsed Electric Fields, Shaka S. Scarlett, Jody A. White, Peter F. Blackmore, Karl H. Schoenbach, Juergen Kolb Jan 2009

Regulation Of Intracellular Calcium Concentration By Nanosecond Pulsed Electric Fields, Shaka S. Scarlett, Jody A. White, Peter F. Blackmore, Karl H. Schoenbach, Juergen Kolb

Bioelectrics Publications

Changes in [Ca2+]i response of individual Jurkat cells to nanosecond pulsed electric fields (nsPEFs) of 60 ns and field strengths of 25, 50, and 100 kV/cm were investigated. The magnitude of the nsPEF-induced rise in [Ca2+]i was dependent on the electric field strength. With 25 and 50 kV/cm, the [Ca2+]i response was due to the release of Ca2+ from intracellular stores and occurred in less than 18 ms. With 100 kV/cm, the increase in [Ca2+]i was due to both internal release and to influx across the plasma …