Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Life Sciences

Discerning Drivers Of Cancer: Computational Approaches To Somatic Exome Sequencing Data, Runjun Kumar May 2018

Discerning Drivers Of Cancer: Computational Approaches To Somatic Exome Sequencing Data, Runjun Kumar

Arts & Sciences Electronic Theses and Dissertations

Paired tumor-normal sequencing of thousands of patient’s exomes has revealed millions of somatic mutations, but functional characterization and clinical decision making are stymied because biologically neutral ‘passenger’ mutations greatly outnumber pathogenic ‘driver’ mutations. Since most mutations will return negative results if tested, conventional resource-intensive experiments are reserved for mutations which are observed in multiple patients or rarer mutations found in well-established cancer genes. Most mutations are therefore never tested, diminishing the potential to discover new mechanisms of cancer development and treatment opportunities. Computational methods that reliably prioritize mutations for testing would greatly increase the translation of sequencing results to clinical …


Development And Application Of Comparative Gene Co-Expression Network Methods In Brachypodium Distachyon, Henry David Priest May 2016

Development And Application Of Comparative Gene Co-Expression Network Methods In Brachypodium Distachyon, Henry David Priest

Arts & Sciences Electronic Theses and Dissertations

Gene discovery and characterization is a long and labor-intensive process. Gene co-expression network analysis is a long-standing powerful approach that can strongly enrich signals within gene expression datasets to predict genes critical for many cellular functions. Leveraging this approach with a large number of transcriptome datasets does not yield a concomitant increase in network granularity. Independently generated datasets that describe gene expression in various tissues, developmental stages, times of day, and environments can carry conflicting co-expression signals. The gene expression responses of the model C3 grass Brachypodium distachyon to abiotic stress is characterized by a co-expression-based analysis, identifying 22 modules …