Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Wright State University

Theses/Dissertations

Biochemistry, Biophysics, and Structural Biology

Biomedical Research

Publication Year

Articles 1 - 6 of 6

Full-Text Articles in Life Sciences

Genomic Instability At A Polypurine/Polypyrimidine Repeat Sequence, Nathen S. Zavada Jan 2022

Genomic Instability At A Polypurine/Polypyrimidine Repeat Sequence, Nathen S. Zavada

Browse all Theses and Dissertations

Microsatellite repeat sequences have been shown to induce replication stalling, fork collapse, double-strand breaks (DSBs), and possibly stimulate break-induced replication. In this study we use a dual-fluorescent HeLa model that is designed to monitor recombination at an ectopic site through use of flow cytometry and inverse PCR with a microsatellite in the lagging strand for DNA synthesis. To test the stability of the 78 bp polypurine/pyrimidine repeat from the PDK1 locus, we subjected cells to replication stress drugs designed to induce DSBs and measure break-induced replication (BIR). The study revealed that polypurine repeat cells undergo endogenous stress contributing to instability …


Microsatellites And Their Association With Break Induced Replication, French J. Damewood Iv Jan 2021

Microsatellites And Their Association With Break Induced Replication, French J. Damewood Iv

Browse all Theses and Dissertations

To study microsatellites instability and their repair pathways a dual fluorescent (DF2) and selectable (ganciclovir sensitive/ thymidine kinase (TK) expressing) cell system was assayed using replication fork stalling agents hydroxyurea and telomestatin. These cell lines carried ectopically integrated microsatellites derived from the Dystrophia Myotonica Protein Kinase (DMPK) gene ((CTG)102 microsatellite), or an 88 bp polypurine/ polypyrimidine (Pu/Py) repeat from the PKD-1 locus, inserted into a FLP recombinase target site. These microsatellites form non-B DNA structures in -vivo and in-vitro causing replication fork stalling and double strand breaks. DF2 myc (CTG)102 -TK cells treated with hydroxyurea were assayed for mutagenesis of …


Microsatellites And Their Association With Break Induced Replication, French J. Damewood Iv Jan 2021

Microsatellites And Their Association With Break Induced Replication, French J. Damewood Iv

Browse all Theses and Dissertations

To study microsatellites instability and their repair pathways a dual fluorescent (DF2) and selectable (ganciclovir sensitive/ thymidine kinase (TK) expressing) cell system was assayed using replication fork stalling agents hydroxyurea and telomestatin. These cell lines carried ectopically integrated microsatellites derived from the Dystrophia Myotonica Protein Kinase (DMPK) gene ((CTG)102 microsatellite), or an 88 bp polypurine/ polypyrimidine (Pu/Py) repeat from the PKD-1 locus, inserted into a FLP recombinase target site. These microsatellites form non-B DNA structures in -vivo and in-vitro causing replication fork stalling and double strand breaks. DF2 myc (CTG)102 -TK cells treated with hydroxyurea were assayed for mutagenesis of …


Erk3 Negatively Regulates The Il-6/Stat3 Signaling Via Socs3, Astha Shakya Jan 2019

Erk3 Negatively Regulates The Il-6/Stat3 Signaling Via Socs3, Astha Shakya

Browse all Theses and Dissertations

Mitogen activated protein kinases (MAPKs) are Ser/Thr kinases that relay the extracellular signal into intracellular responses and regulate several biological responses. They are classified into conventional MAPKs and atypical MAPKs. Extracellular signal regulated kinase 3 (ERK3) is an atypical MAPK that has a single phospho-acceptor site (Ser 189) in its activation motif instead of the canonical Thr-Xaa-Tyr (TXY) motif of conventional MAPK like ERK1/2. ERK3 comprises of a unique C terminal tail and a central C34 domain that further distinguishes it from ERK1/2. Moreover, compared to ERK1/2, much less is known about the upstream activators and the downstream targets of …


∆Np63Α Positively Regulates Erk3 Expression In Non-Melanoma Skin Cancer, Eid Salem Alshammari Jan 2019

∆Np63Α Positively Regulates Erk3 Expression In Non-Melanoma Skin Cancer, Eid Salem Alshammari

Browse all Theses and Dissertations

Non-melanoma skin cancer (NMSC) is a group of skin cancer that includes basal cell carcinoma of the skin (BCC), squamous cell carcinoma of the skin (SCC), actinic keratoses, a precursor to SCC, and other rare cutaneous carcinomas. p63, a member of the p53 gene family, is an important regulator for epithelial tissue growth and development. ∆Np63α, a main isoform of p63, is highly expressed in NMSC and plays essential roles in NMSCs development. Extracellular signal-regulated kinase 3 (ERK3) is an atypical member of the MAPK family. It possesses a single phosphorylation site (serine 189) in its activation loop, which makes …


Lipin1 Regulates Skeletal Muscle Differentiation Through The Pkc/Hdac5/Mef2c:Myod -Mediated Pathway, Abdulrahman M. Jama Jan 2018

Lipin1 Regulates Skeletal Muscle Differentiation Through The Pkc/Hdac5/Mef2c:Myod -Mediated Pathway, Abdulrahman M. Jama

Browse all Theses and Dissertations

Our previous characterization of global lipin1-deficient (fld) mice demonstrated that lipin1 played a novel role in skeletal muscle (SM) regeneration. The clinical relevance of lipin1 has been observed in patients with lipin1 null mutations where they exhibited severe rhabdomyolysis with aggregated and dysfunctional mitochondria. Lipin1 is a key gene that plays an important role in lipid biosynthesis and metabolism. It has dual functions as it contains a phosphatase activity that converts phosphatidic acid (PA) to diacylglycerol (DAG), the penultimate step in triglycerides (TAG) biosynthesis as well as transcriptional co-activator function. In the cytosol and ER, lipin1 carries out its lipid …