Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Life Sciences

Insights Into The Function Of The Fatc Domain Of Saccharomyces Cervisiae Tra1 Via Mutation And Suppressor Analysis, Samantha A. Pillon Aug 2013

Insights Into The Function Of The Fatc Domain Of Saccharomyces Cervisiae Tra1 Via Mutation And Suppressor Analysis, Samantha A. Pillon

Electronic Thesis and Dissertation Repository

The regulation of transcription is an important cellular function because it is the first step in gene regulation. In Saccharomyces cerevisiae, two protein complexes, SAGA and NuA4, act as regulators of transcription. A common protein shared between these two complexes, called Tra1, regulates transcriptional activation through its interaction with gene specific transcriptional activators. Tra1 is a member of the PIKK family of proteins, which are characterized by FAT, PI3K and FATC domains. The FATC domain encompasses the terminal 33-35 residues of the protein. Two mutations within the FATC domain, tra1-L3733A and tra1-F3744A, result in slow growth under stress …


Molecular Imaging To Target Transplanted Muscle Progenitor Cells, Kelly Gutpell, Rebecca Mcgirr, Lisa Hoffman Mar 2013

Molecular Imaging To Target Transplanted Muscle Progenitor Cells, Kelly Gutpell, Rebecca Mcgirr, Lisa Hoffman

Anatomy and Cell Biology Publications

Duchenne muscular dystrophy (DMD) is a severe genetic neuromuscular disorder that affects 1 in 3,500 boys, and is characterized by progressive muscle degeneration(1, 2). In patients, the ability of resident muscle satellite cells (SCs) to regenerate damaged myofibers becomes increasingly inefficient(4). Therefore, transplantation of muscle progenitor cells (MPCs)/myoblasts from healthy subjects is a promising therapeutic approach to DMD. A major limitation to the use of stem cell therapy, however, is a lack of reliable imaging technologies for long-term monitoring of implanted cells, and for evaluating its effectiveness. Here, we describe a non-invasive, real-time approach to evaluate the success of myoblast …