Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Utah State University

Environmental Sciences

Climate change

2021

Articles 1 - 2 of 2

Full-Text Articles in Life Sciences

Understanding How Changes In Precipitation Intensity Will Affect Vegetation In The Western U.S., Cristina Chirvasa Dec 2021

Understanding How Changes In Precipitation Intensity Will Affect Vegetation In The Western U.S., Cristina Chirvasa

Fall Student Research Symposium 2021

Precipitation events are becoming more intense as the atmosphere warms, but it remains unclear how precipitation intensification will affect plant growth in arid and semiarid ecosystems. There is conflicting evidence suggesting that larger precipitation events may either increase or decrease plant growth. Here, we report the growth responses of herbaceous and woody plants to experimental manipulations of precipitation intensity in a cold, semi-arid ecosystem in Utah, USA. In this experiment, precipitation was collected and redeposited as fewer, larger events with total annual precipitation kept constant across treatments. Results from the first two growing seasons revealed that more intense events ‘pushed’ …


Understanding The Effects Of Climate Change Via Disturbance On Pristine Arctic Lakes—Multitrophic Level Response And Recovery To A 12-Yr, Low-Level Fertilization Experiment, Phaedra Budy, Casey A. Pennock, Anne E. Giblin, Chris Luecke, Daniel L. White, George W. Kling Aug 2021

Understanding The Effects Of Climate Change Via Disturbance On Pristine Arctic Lakes—Multitrophic Level Response And Recovery To A 12-Yr, Low-Level Fertilization Experiment, Phaedra Budy, Casey A. Pennock, Anne E. Giblin, Chris Luecke, Daniel L. White, George W. Kling

Watershed Sciences Student Research

Effects of climate change-driven disturbance on lake ecosystems can be subtle; indirect effects include increased nutrient loading that could impact ecosystem function. We designed a low-level fertilization experiment to mimic persistent, climate change-driven disturbances (deeper thaw, greater weathering, or thermokarst failure) delivering nutrients to arctic lakes. We measured responses of pelagic trophic levels over 12 yr in a fertilized deep lake with fish and a shallow fishless lake, compared to paired reference lakes, and monitored recovery for 6 yr. Relative to prefertilization in the deep lake, we observed a maximum pelagic response in chl a (+201%), dissolved oxygen (DO, −43%), …