Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 9 of 9

Full-Text Articles in Life Sciences

What Is Refractory Organic Matter In The Ocean?, Federico Baltar, Xosé A. Alvarez-Salgado, Javier Arístegui, Ronald Benner, Dennis A. Hansell, Gerhard J. Herndl, Christian Lønborg Apr 2021

What Is Refractory Organic Matter In The Ocean?, Federico Baltar, Xosé A. Alvarez-Salgado, Javier Arístegui, Ronald Benner, Dennis A. Hansell, Gerhard J. Herndl, Christian Lønborg

Faculty Publications

About 20% of the organic carbon produced in the sunlit surface ocean is transported into the ocean’s interior as dissolved, suspended and sinking particles to be mineralized and sequestered as dissolved inorganic carbon (DIC), sedimentary particulate organic carbon (POC) or “refractory” dissolved organic carbon (rDOC). Recently, the physical and biological mechanisms associated with the particle pumps have been revisited, suggesting that accepted fluxes might be severely underestimated (Boyd et al., 2019; Buesseler et al., 2020). Perhaps even more poorly understood are the mechanisms driving rDOC production and its potential accumulation in the ocean. On the basis of …


What Is Refractory Organic Matter In The Ocean?, Federico Baltar, Xosé A. Alvarez-Salgado, Javier Arístegui, Ronald Benner, Dennis A. Hansell, Gerhard J. Herndl, Christian Lønborg Apr 2021

What Is Refractory Organic Matter In The Ocean?, Federico Baltar, Xosé A. Alvarez-Salgado, Javier Arístegui, Ronald Benner, Dennis A. Hansell, Gerhard J. Herndl, Christian Lønborg

Faculty Publications

About 20% of the organic carbon produced in the sunlit surface ocean is transported into the ocean’s interior as dissolved, suspended and sinking particles to be mineralized and sequestered as dissolved inorganic carbon (DIC), sedimentary particulate organic carbon (POC) or “refractory” dissolved organic carbon (rDOC). Recently, the physical and biological mechanisms associated with the particle pumps have been revisited, suggesting that accepted fluxes might be severely underestimated (Boyd et al., 2019; Buesseler et al., 2020). Perhaps even more poorly understood are the mechanisms driving rDOC production and its potential accumulation in the ocean. On the basis of …


What Is Refractory Organic Matter In The Ocean?, Federico Baltar, Xosé A. Alvarez-Salgado, Javier Arístegui, Ronald Benner, Dennis A. Hansell, Gerhard J. Herndl, Christian Lønborg Apr 2021

What Is Refractory Organic Matter In The Ocean?, Federico Baltar, Xosé A. Alvarez-Salgado, Javier Arístegui, Ronald Benner, Dennis A. Hansell, Gerhard J. Herndl, Christian Lønborg

Faculty Publications

About 20% of the organic carbon produced in the sunlit surface ocean is transported into the ocean’s interior as dissolved, suspended and sinking particles to be mineralized and sequestered as dissolved inorganic carbon (DIC), sedimentary particulate organic carbon (POC) or “refractory” dissolved organic carbon (rDOC). Recently, the physical and biological mechanisms associated with the particle pumps have been revisited, suggesting that accepted fluxes might be severely underestimated (Boyd et al., 2019; Buesseler et al., 2020). Perhaps even more poorly understood are the mechanisms driving rDOC production and its potential accumulation in the ocean. On the basis of …


Parasite Biodiversity Faces Extinction And Redistribution In A Changing Climate, Colin J. Carlson, Kevin R. Burgio, Eric R. Dougherty, Anna J. Phillips, Veronica M. Bueno, Christopher F. Clements, Giovanni Castaldo, Tad Dallas, Carrie A. Cizauskas, Graeme S. Cumming, Jorge Doña, Nyeema C. Harris, Roger Jovani, Sergey Mironov, Oliver C. Muellerklein, Heather C. Proctor, Wayne M. Getz Sep 2017

Parasite Biodiversity Faces Extinction And Redistribution In A Changing Climate, Colin J. Carlson, Kevin R. Burgio, Eric R. Dougherty, Anna J. Phillips, Veronica M. Bueno, Christopher F. Clements, Giovanni Castaldo, Tad Dallas, Carrie A. Cizauskas, Graeme S. Cumming, Jorge Doña, Nyeema C. Harris, Roger Jovani, Sergey Mironov, Oliver C. Muellerklein, Heather C. Proctor, Wayne M. Getz

Faculty Publications

Climate change is a well-documented driver of both wildlife extinction and disease emergence, but the negative impacts of climate change on parasite diversity are undocumented. We compiled the most comprehensive spatially explicit data set available for parasites, projected range shifts in a changing climate, and estimated extinction rates for eight major parasite clades. On the basis of 53,133 occurrences capturing the geographic ranges of 457 parasite species, conservative model projections suggest that 5 to 10% of these species are committed to extinction by 2070 from climate-driven habitat loss alone. We find no evidence that parasites with zoonotic potential have a …


Climate Warming Can Accelerate Carbon Fluxes Without Changing Soil Carbon Stocks, Susan E. Ziegler, Ronald Benner, Sharon A. Billings, Kate A. Edwards, Michael Philben, Xinbiao Zhu, Jerome Laganière Feb 2017

Climate Warming Can Accelerate Carbon Fluxes Without Changing Soil Carbon Stocks, Susan E. Ziegler, Ronald Benner, Sharon A. Billings, Kate A. Edwards, Michael Philben, Xinbiao Zhu, Jerome Laganière

Faculty Publications

Climate warming enhances multiple ecosystem C fluxes, but the net impact of changing C fluxes on soil organic carbon (SOC) stocks over decadal to centennial time scales remains unclear. We investigated the effects of climate on C fluxes and soil C stocks using space-for-time substitution along a boreal forest climate gradient encompassing spatially replicated sites at each of three latitudes. All regions had similar SOC concentrations and stocks (5.6 to 6.7 kg C m−2). The three lowest latitude forests exhibited the highest productivity across the transect, with tree biomass:age ratios and litterfall rates 300 and 125% higher than those in …


Fluctuating Temperatures Alter Environmental Pathogen Transmission In A Daphnia–Pathogen System, Tad Dallas, John M. Drake Nov 2016

Fluctuating Temperatures Alter Environmental Pathogen Transmission In A Daphnia–Pathogen System, Tad Dallas, John M. Drake

Faculty Publications

Environmental conditions are rarely constant, but instead vary spatially and temporally. This variation influences ecological interactions and epidemiological dynamics, yet most experimental studies examine interactions under constant conditions. We examined the effects of variability in temperature on the host–pathogen relationship between an aquatic zooplankton host (Daphnia laevis) and an environmentally transmitted fungal pathogen (Metschnikowia bicuspidata). We manipulated temperature variability by exposing all populations to mean temperatures of 20°C for the length of the experiments, but introducing periods of 1, 2, and 4 hr each day where the populations were exposed to 28°C followed by periods of …


The Response Of Runoff And Sediment Loading In The Apalachicola River, Florida To Climate And Land Use Land Cover Change, Paige A. Hovenga, Dingbao Wang, Stephen C. Medeiros, Scott C. Hagen, Karim Alizad Apr 2016

The Response Of Runoff And Sediment Loading In The Apalachicola River, Florida To Climate And Land Use Land Cover Change, Paige A. Hovenga, Dingbao Wang, Stephen C. Medeiros, Scott C. Hagen, Karim Alizad

Faculty Publications

The response of runoff and sediment loading in the Apalachicola River under projected climate change scenarios and land use land cover (LULC) change is evaluated. A hydrologic model using the Soil and Water Assessment Tool was developed for the Apalachicola region to simulate daily runoff and sediment load under present (circa 2000) and future conditions (2100) to understand how parameters respond over a seasonal time frame to changes in climate, LULC, and coupled climate/LULC. The Long Ashton Research Station-Weather Generator was used to downscale temperature and precipitation from three general circulation models, each under Intergovernmental Panel on Climate Change (IPCC) …


Organismal Climatology: Analyzing Environmental Variability At Scales Relevant To Physiological Stress, Brian Helmuth, Bernardo R. Broitman, Lauren Yamane, Sarah E. Gilman, Katharine Mach, K. A.S. Mislan, Mark W. Denny Mar 2010

Organismal Climatology: Analyzing Environmental Variability At Scales Relevant To Physiological Stress, Brian Helmuth, Bernardo R. Broitman, Lauren Yamane, Sarah E. Gilman, Katharine Mach, K. A.S. Mislan, Mark W. Denny

Faculty Publications

Predicting when, where and with what magnitude climate change is likely to affect the fitness, abundance and distribution of organisms and the functioning of ecosystems has emerged as a high priority for scientists and resource managers. However, even in cases where we have detailed knowledge of current species’ range boundaries, we often do not understand what, if any, aspects of weather and climate act to set these limits. This shortcoming significantly curtails our capacity to predict potential future range shifts in response to climate change, especially since the factors that set range boundaries under those novel conditions may be different …


From Cells To Coastlines: How Can We Use Physiology To Forecast The Impacts Of Climate Change?, Brian Helmuth Mar 2009

From Cells To Coastlines: How Can We Use Physiology To Forecast The Impacts Of Climate Change?, Brian Helmuth

Faculty Publications

The interdisciplinary fields of conservation physiology, macrophysiology, and mechanistic ecological forecasting have recently emerged as means of integrating detailed physiological responses to the broader questions of ecological and evolutionary responses to global climate change. Bridging the gap between large-scale records of weather and climate (as measured by remote sensing platforms, buoys and ground-based weather stations) and the physical world as experienced by organisms (niche-level measurements) requires a mechanistic understanding of how ‘environmental signals’ (parameters such as air, surface and water temperature, food availability, water flow) are translated into signals at the scale of the organism or cell (e.g. body temperature, …