Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 6 of 6

Full-Text Articles in Life Sciences

The Role Of Nutrition And Hormone Signaling In Extended Larval Development And Obesity In Starvation-Selected Drosophila Melanogaster, Jennifer M. Clark May 2021

The Role Of Nutrition And Hormone Signaling In Extended Larval Development And Obesity In Starvation-Selected Drosophila Melanogaster, Jennifer M. Clark

UNLV Theses, Dissertations, Professional Papers, and Capstones

Brief periods of starvation are a common stressor that most animals encounter in the wild and must be able to survive in order to maximize their fitness. Starvation resistance of the adult fruit fly, Drosophila melanogaster, is thought to be primarily conferred by adult fat stores, body size, metabolic rate, behavior, and activity levels. Additionally, flies selected for starvation resistance also often show delayed pupariation, which is usually indicative of altered hormone signaling. How starvation selection extends development and if it contributes to adult starvation resistance remains incompletely studied. Identifying the targets of starvation selection that cause extended development and …


Minimotif Miner 3.0: Database Expansion And Significantly Improved Reduction Of False-Positive Predictions From Consensus Sequences., Tian Mi, Jerlin Camilus Merlin, Sandeep Deverasetty, Michael R. Gryk, Travis J. Bill, Andrew W. Brooks, Logan Lee, Viraj Rathnayake, Christian A. Ross, David P. Sargeant, Christy L. Strong, Paula Watts, Sanguthevar Rajasekaran, Martin Schiller Jan 2012

Minimotif Miner 3.0: Database Expansion And Significantly Improved Reduction Of False-Positive Predictions From Consensus Sequences., Tian Mi, Jerlin Camilus Merlin, Sandeep Deverasetty, Michael R. Gryk, Travis J. Bill, Andrew W. Brooks, Logan Lee, Viraj Rathnayake, Christian A. Ross, David P. Sargeant, Christy L. Strong, Paula Watts, Sanguthevar Rajasekaran, Martin Schiller

Life Sciences Faculty Research

Minimotif Miner (MnM available at http://minimotifminer.org or http://mnm.engr.uconn.edu) is an online database for identifying new minimotifs in protein queries. Minimotifs are short contiguous peptide sequences that have a known function in at least one protein. Here we report the third release of the MnM database which has now grown 60-fold to approximately 300,000 minimotifs. Since short minimotifs are by their nature not very complex we also summarize a new set of false-positive filters and linear regression scoring that vastly enhance minimotif prediction accuracy on a test data set. This online database can be used to predict new functions in proteins …


Mimosa: A System For Minimotif Annotation, Jay Vyas, Ronald J. Nowling, Thomas Meusburger, David P. Sargeant, Krishna Kadaveru, Michael R. Gryk, Vamsi Kundeti, Sanguthevar Rajasekaran, Martin Schiller May 2010

Mimosa: A System For Minimotif Annotation, Jay Vyas, Ronald J. Nowling, Thomas Meusburger, David P. Sargeant, Krishna Kadaveru, Michael R. Gryk, Vamsi Kundeti, Sanguthevar Rajasekaran, Martin Schiller

Life Sciences Faculty Research

BACKGROUND:

Minimotifs are short peptide sequences within one protein, which are recognized by other proteins or molecules. While there are now several minimotif databases, they are incomplete. There are reports of many minimotifs in the primary literature, which have yet to be annotated, while entirely novel minimotifs continue to be published on a weekly basis. Our recently proposed function and sequence syntax for minimotifs enables us to build a general tool that will facilitate structured annotation and management of minimotif data from the biomedical literature.

RESULTS:

We have built the MimoSA application for minimotif annotation. The application supports management of …


Partitioning Of Minimotifs Based On Function With Improved Prediction Accuracy, Sanguthevar Rajasekaran, Tian Mi, Jerlin Camilus Merlin, Aaron Oommen, Patrick R. Gradie, Martin R. Schiller Apr 2010

Partitioning Of Minimotifs Based On Function With Improved Prediction Accuracy, Sanguthevar Rajasekaran, Tian Mi, Jerlin Camilus Merlin, Aaron Oommen, Patrick R. Gradie, Martin R. Schiller

Life Sciences Faculty Research

Background

Minimotifs are short contiguous peptide sequences in proteins that are known to have a function in at least one other protein. One of the principal limitations in minimotif prediction is that false positives limit the usefulness of this approach. As a step toward resolving this problem we have built, implemented, and tested a new data-driven algorithm that reduces false-positive predictions.

Methodology/Principal Findings

Certain domains and minimotifs are known to be strongly associated with a known cellular process or molecular function. Therefore, we hypothesized that by restricting minimotif predictions to those where the minimotif containing protein and target protein have …


A Proposed Syntax For Minimotif Semantics, Version 1., Jay Vyas, Ronald J. Nowling, Mark W. Maciejewski, Sanguthevar Rajasekaran, Michael R. Gryk, Martin R. Schiller Aug 2009

A Proposed Syntax For Minimotif Semantics, Version 1., Jay Vyas, Ronald J. Nowling, Mark W. Maciejewski, Sanguthevar Rajasekaran, Michael R. Gryk, Martin R. Schiller

Life Sciences Faculty Research

BACKGROUND:

One of the most important developments in bioinformatics over the past few decades has been the observation that short linear peptide sequences (minimotifs) mediate many classes of cellular functions such as protein-protein interactions, molecular trafficking and post-translational modifications. As both the creators and curators of a database which catalogues minimotifs, Minimotif Miner, the authors have a unique perspective on the commonalities of the many functional roles of minimotifs. There is an obvious usefulness in standardizing functional annotations both in allowing for the facile exchange of data between various bioinformatics resources, as well as the internal clustering of sets of …


Minimotif Miner 2nd Release: A Database And Web System For Motif Search, Sanguthevar Rajasekaran, Sudha Balla, Patrick R. Gradie, Michael R. Gryk, Krishna Kadaveru, Vamsi Kundeti, Mark W. Maciejewski, Tian Mi, Nicholas Rubino, Jay Vyas, Martin R. Schiller Jan 2009

Minimotif Miner 2nd Release: A Database And Web System For Motif Search, Sanguthevar Rajasekaran, Sudha Balla, Patrick R. Gradie, Michael R. Gryk, Krishna Kadaveru, Vamsi Kundeti, Mark W. Maciejewski, Tian Mi, Nicholas Rubino, Jay Vyas, Martin R. Schiller

Life Sciences Faculty Research

Minimotif Miner (MnM) consists of a minimotif database and a web-based application that enables prediction of motif-based functions in user-supplied protein queries. We have revised MnM by expanding the database more than 10-fold to approximately 5000 motifs and standardized the motif function definitions. The web-application user interface has been redeveloped with new features including improved navigation, screencast-driven help, support for alias names and expanded SNP analysis. A sample analysis of prion shows how MnM 2 can be used.