Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Life Sciences

Mutational Analyses Of A Fork Head Associated Domain Protein, Dawdle, In Arabidopsis Thaliana, Lakshmi Ayiloor Narayanan, Dipaloke Mukherjee, Shuxin Zhang, Bin Yu, David Chevalier Jan 2013

Mutational Analyses Of A Fork Head Associated Domain Protein, Dawdle, In Arabidopsis Thaliana, Lakshmi Ayiloor Narayanan, Dipaloke Mukherjee, Shuxin Zhang, Bin Yu, David Chevalier

Center for Plant Science Innovation: Faculty and Staff Publications

DAWDLE (DDL) gene encodes a protein that contains an N-terminal arginine-rich domain and a C-terminal Fork Head Associated (FHA) domain in Arabidopsis thaliana. DDL protein is believed to function in microRNA biogenesis by mediating the recruitment of pri-microRNA to DICER-LIKE 1 and also stabilizing the microRNA. The aim of this study was to conduct a structure-function analysis to identify the regions in DDL that are of functional significance. Targeted Induced Local Lesions in Genome screen was performed in the Columbia erecta-105 background of Arabidopsis resulting in the identification of eight point mutations spanning DDL. The mutants were characterized by …


Plant Mitochondrial Genome Evolution Can Be Explained By Dna Repair Mechanisms, Alan C. Christensen Jan 2013

Plant Mitochondrial Genome Evolution Can Be Explained By Dna Repair Mechanisms, Alan C. Christensen

School of Biological Sciences: Faculty Publications

Plant mitochondrial genomes are notorious for their large and variable size, nonconserved open reading frames of unknown function, and high rates of rearrangement. Paradoxically, the mutation rates are very low. However, mutation rates can only be measured in sequences that can be aligned—a very small part of plant mitochondrial genomes. Comparison of the complete mitochondrial genome sequences of two ecotypes of Arabidopsis thaliana allows the alignment of noncoding as well as coding DNA and estimation of the mutation rates in both. A recent chimeric duplication is also analyzed. A hypothesis is proposed that the mechanisms of plant mitochondrial DNA repair …


A Thraustochytrid Diacylglycerol Acyltransferase 2 With Broad Substrate Specificity Strongly Increases Oleic Acid Content In Engineered Arabidopsis Thaliana Seeds, Chunyu Zhang, Umidjon Iskandarov, Elliott T. Klotz, Robyn L. Stevens, Rebecca E. Cahoon, Tara J. Nazarenus, Suzette L. Pereira, Edgar B. Cahoon Jan 2013

A Thraustochytrid Diacylglycerol Acyltransferase 2 With Broad Substrate Specificity Strongly Increases Oleic Acid Content In Engineered Arabidopsis Thaliana Seeds, Chunyu Zhang, Umidjon Iskandarov, Elliott T. Klotz, Robyn L. Stevens, Rebecca E. Cahoon, Tara J. Nazarenus, Suzette L. Pereira, Edgar B. Cahoon

Center for Plant Science Innovation: Faculty and Staff Publications

Diacylglycerol acyltransferase (DGAT) catalyses the last step in acyl-CoA-dependent triacylglycerol (TAG) biosynthesis and is an important determinant of cellular oil content and quality. In this study, a gene, designated TaDGAT2, encoding a type 2 DGAT (DGAT2)-related enzyme was identified from the oleaginous marine protist Thraustochytrium aureum. The deduced TaDGAT2 sequence contains a ~460 amino acid domain most closely related to DGAT2s from Dictyostelium sp. (45–50% identity). Recombinant TaDGAT2 restored TAG biosynthesis to the Saccharomyces cerevisiae H1246 TAG-deficient mutant, and microsomes from the complemented mutant displayed DGAT activity with C16 and C18 saturated and unsaturated fatty acyl-CoA and diacylglycerol …