Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

University of Nebraska - Lincoln

Plant Pathology

2016

Chlorella variabilis

Articles 1 - 1 of 1

Full-Text Articles in Life Sciences

Comparative Genomics, Transcriptomics, And Physiology Distinguish Symbiotic From Free-Living Chlorella Strains, Cristian F. Quispe, Olivia Sonderman, Maya Khasin, Wayne R. Riekhof, James L. Van Etten, Kenneth Nickerson Jul 2016

Comparative Genomics, Transcriptomics, And Physiology Distinguish Symbiotic From Free-Living Chlorella Strains, Cristian F. Quispe, Olivia Sonderman, Maya Khasin, Wayne R. Riekhof, James L. Van Etten, Kenneth Nickerson

Kenneth Nickerson Papers

Most animal–microbe symbiotic interactions must be advantageous to the host and provide nutritional benefits to the endosymbiont. When the host provides nutrients, it can gain the capacity to control the interaction, promote self-growth, and increase its fitness. Chlorella-like green algae engage in symbiotic relationships with certain protozoans, a partnership that significantly impacts the physiology of both organisms. Consequently, it is often challenging to grow axenic Chlorella cultures after isolation from the host because they are nutrient fastidious and often susceptible to virus infection. We hypothesize that the establishment of a symbiotic relationship resulted in natural selection for nutritional and metabolic …