Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

University of Kentucky

Plant and Soil Sciences Faculty Publications

Fruit

Articles 1 - 1 of 1

Full-Text Articles in Life Sciences

A Common Genetic Mechanism Underlies Morphological Diversity In Fruits And Other Plant Organs, Shan Wu, Biyao Zhang, Neda Keyhaninejad, Gustavo R. Rodríguez, Hyun Jung Kim, Manohar Chakrabarti, Eudald Illa-Berenguer, Nathan K. Taitano, M. J. Gonzalo, Aurora Díaz, Yupeng Pan, Courtney P. Leisner, Dennis Halterman, C. Robin Buell, Yiqun Weng, Shelley H. Jansky, Herman Van Eck, Johan Willemsen, Antonio J Monforte, Tea Meulia, Esther Van Der Knaap Nov 2018

A Common Genetic Mechanism Underlies Morphological Diversity In Fruits And Other Plant Organs, Shan Wu, Biyao Zhang, Neda Keyhaninejad, Gustavo R. Rodríguez, Hyun Jung Kim, Manohar Chakrabarti, Eudald Illa-Berenguer, Nathan K. Taitano, M. J. Gonzalo, Aurora Díaz, Yupeng Pan, Courtney P. Leisner, Dennis Halterman, C. Robin Buell, Yiqun Weng, Shelley H. Jansky, Herman Van Eck, Johan Willemsen, Antonio J Monforte, Tea Meulia, Esther Van Der Knaap

Plant and Soil Sciences Faculty Publications

Shapes of edible plant organs vary dramatically among and within crop plants. To explain and ultimately employ this variation towards crop improvement, we determined the genetic, molecular and cellular bases of fruit shape diversity in tomato. Through positional cloning, protein interaction studies, and genome editing, we report that OVATE Family Proteins and TONNEAU1 Recruiting Motif proteins regulate cell division patterns in ovary development to alter final fruit shape. The physical interactions between the members of these two families are necessary for dynamic relocalization of the protein complexes to different cellular compartments when expressed in tobacco leaf cells. Together with data …