Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

University of Kentucky

Molecular and Cellular Biochemistry Faculty Publications

Protein Multimerization

Articles 1 - 7 of 7

Full-Text Articles in Life Sciences

The Activity Of The Serotonin Receptor 2c Is Regulated By Alternative Splicing, Stefan Stamm, Samuel B. Gruber, Alexander G. Rabchevsky, Ronald B. Emeson Sep 2017

The Activity Of The Serotonin Receptor 2c Is Regulated By Alternative Splicing, Stefan Stamm, Samuel B. Gruber, Alexander G. Rabchevsky, Ronald B. Emeson

Molecular and Cellular Biochemistry Faculty Publications

The central nervous system-specific serotonin receptor 2C (5HT2C) controls key physiological functions, such as food intake, anxiety, and motoneuron activity. Its deregulation is involved in depression, suicidal behavior, and spasticity, making it the target for antipsychotic drugs, appetite controlling substances, and possibly anti-spasm agents. Through alternative pre-mRNA splicing and RNA editing, the 5HT2C gene generates at least 33 mRNA isoforms encoding 25 proteins. The 5HT2C is a G-protein coupled receptor that signals through phospholipase C, influencing the expression of immediate/early genes like c-fos. Most 5HT2C isoforms show constitutive activity, i.e., signal without ligand binding. The constitutive activity of 5HT2C is …


Mutations In The Transmembrane Domain And Cytoplasmic Tail Of Hendra Virus Fusion Protein Disrupt Virus-Like-Particle Assembly, Nicolás P. Cifuentes-Muñoz, Weina Sun, Greeshma Ray, Phuong Tieu Schmitt, Stacy Webb, Kathleen Gibson, Rebecca Ellis Dutch, Anthony P. Schmitt Jul 2017

Mutations In The Transmembrane Domain And Cytoplasmic Tail Of Hendra Virus Fusion Protein Disrupt Virus-Like-Particle Assembly, Nicolás P. Cifuentes-Muñoz, Weina Sun, Greeshma Ray, Phuong Tieu Schmitt, Stacy Webb, Kathleen Gibson, Rebecca Ellis Dutch, Anthony P. Schmitt

Molecular and Cellular Biochemistry Faculty Publications

Hendra virus (HeV) is a zoonotic paramyxovirus that causes deadly illness in horses and humans. An intriguing feature of HeV is the utilization of endosomal protease for activation of the viral fusion protein (F). Here we investigated how endosomal F trafficking affects HeV assembly. We found that the HeV matrix (M) and F proteins each induced particle release when they were expressed alone but that their coexpression led to coordinated assembly of virus-like particles (VLPs) that were morphologically and physically distinct from M-only or F-only VLPs. Mutations to the F protein transmembrane domain or cytoplasmic tail that disrupted endocytic trafficking …


Mycosins Are Required For The Stabilization Of The Esx-1 And Esx-5 Type Vii Secretion Membrane Complexes, Vincent J. C. Van Winden, Roy Ummels, Sander R. Piersma, Connie R. Jiménez, Konstantin V. Korotkov, Wilbert Bitter, Edith N. G. Houben Oct 2016

Mycosins Are Required For The Stabilization Of The Esx-1 And Esx-5 Type Vii Secretion Membrane Complexes, Vincent J. C. Van Winden, Roy Ummels, Sander R. Piersma, Connie R. Jiménez, Konstantin V. Korotkov, Wilbert Bitter, Edith N. G. Houben

Molecular and Cellular Biochemistry Faculty Publications

ABSTRACT Pathogenic mycobacteria contain up to five type VII secretion (T7S) systems, ESX-1 to ESX-5. One of the conserved T7S components is the serine protease mycosin (MycP). Strikingly, whereas MycP is essential for secretion, the protease activity of MycP1 in Mycobacterium tuberculosis has been shown to be dispensable for secretion. The essential role of MycP therefore remains unclear. Here we show that MycP1 and MycP5 of M. marinum have similar phenotypes, confirming that MycP has a second unknown function that is essential for its T7S system. To investigate whether this role is related to proper functioning of …


Cysteine 904 Is Required For Maximal Insulin Degrading Enzyme Activity And Polyanion Activation, Eun Suk Song, Manana Melikishvili, Michael G. Fried, Maria A. Juliano, Luiz Juliano, David W. Rodgers, Louis B. Hersh Oct 2012

Cysteine 904 Is Required For Maximal Insulin Degrading Enzyme Activity And Polyanion Activation, Eun Suk Song, Manana Melikishvili, Michael G. Fried, Maria A. Juliano, Luiz Juliano, David W. Rodgers, Louis B. Hersh

Molecular and Cellular Biochemistry Faculty Publications

Cysteine residues in insulin degrading enzyme have been reported as non-critical for its activity. We found that converting the twelve cysteine residues in rat insulin degrading enzyme (IDE) to serines resulted in a cysteine-free form of the enzyme with reduced activity and decreased activation by polyanions. Mutation of each cysteine residue individually revealed cysteine 904 as the key residue required for maximal activity and polyanion activation, although other cysteines affect polyanion binding to a lesser extent. Based on the structure of IDE, Asn 575 was identified as a potential hydrogen bond partner for Cys904 and mutation of this residue also …


Laforin, A Dual Specificity Phosphatase Involved In Lafora Disease, Is Present Mainly As Monomeric Form With Full Phosphatase Activity, Vikas V. Dukhande, Devin M. Rogers, Carlos Romá-Mateo, Jordi Donderis, Alberto Marina, Adam O. Taylor, Pascual Sanz, Matthew S. Gentry Aug 2011

Laforin, A Dual Specificity Phosphatase Involved In Lafora Disease, Is Present Mainly As Monomeric Form With Full Phosphatase Activity, Vikas V. Dukhande, Devin M. Rogers, Carlos Romá-Mateo, Jordi Donderis, Alberto Marina, Adam O. Taylor, Pascual Sanz, Matthew S. Gentry

Molecular and Cellular Biochemistry Faculty Publications

Lafora Disease (LD) is a fatal neurodegenerative epileptic disorder that presents as a neurological deterioration with the accumulation of insoluble, intracellular, hyperphosphorylated carbohydrates called Lafora bodies (LBs). LD is caused by mutations in either the gene encoding laforin or malin. Laforin contains a dual specificity phosphatase domain and a carbohydrate-binding module, and is a member of the recently described family of glucan phosphatases. In the current study, we investigated the functional and physiological relevance of laforin dimerization. We purified recombinant human laforin and subjected the monomer and dimer fractions to denaturing gel electrophoresis, mass spectrometry, phosphatase assays, protein-protein interaction assays, …


Identification Of The Allosteric Regulatory Site Of Insulysin, Nicholas Noinaj, Sonia K. Bhasin, Eun Suk Song, Kirsten E. Scoggin, Maria A. Juliano, Luiz Juliano, Louis B. Hersh, David W. Rodgers Jun 2011

Identification Of The Allosteric Regulatory Site Of Insulysin, Nicholas Noinaj, Sonia K. Bhasin, Eun Suk Song, Kirsten E. Scoggin, Maria A. Juliano, Luiz Juliano, Louis B. Hersh, David W. Rodgers

Molecular and Cellular Biochemistry Faculty Publications

BACKGROUND: Insulin degrading enzyme (IDE) is responsible for the metabolism of insulin and plays a role in clearance of the Aβ peptide associated with Alzheimer's disease. Unlike most proteolytic enzymes, IDE, which consists of four structurally related domains and exists primarily as a dimer, exhibits allosteric kinetics, being activated by both small substrate peptides and polyphosphates such as ATP.

PRINCIPAL FINDINGS: The crystal structure of a catalytically compromised mutant of IDE has electron density for peptide ligands bound at the active site in domain 1 and a distal site in domain 2. Mutating residues in the distal site eliminates allosteric …


Polyglutamine Disruption Of The Huntingtin Exon 1 N Terminus Triggers A Complex Aggregation Mechanism, Ashwani K. Thakur, Murali Jayaraman, Rakesh Mishra, Monika Thakur, Veronique M. Chellgren, In-Ja L Byeon, Dalaver H. Anjum, Ravindra Kodali, Trevor P. Creamer, James F. Conway, Angela M. Gronenborn, Ronald Wetzel Apr 2009

Polyglutamine Disruption Of The Huntingtin Exon 1 N Terminus Triggers A Complex Aggregation Mechanism, Ashwani K. Thakur, Murali Jayaraman, Rakesh Mishra, Monika Thakur, Veronique M. Chellgren, In-Ja L Byeon, Dalaver H. Anjum, Ravindra Kodali, Trevor P. Creamer, James F. Conway, Angela M. Gronenborn, Ronald Wetzel

Molecular and Cellular Biochemistry Faculty Publications

Simple polyglutamine (polyQ) peptides aggregate in vitro via a nucleated growth pathway directly yielding amyloid-like aggregates. We show here that the 17-amino-acid flanking sequence (HTTNT) N-terminal to the polyQ in the toxic huntingtin exon 1 fragment imparts onto this peptide a complex alternative aggregation mechanism. In isolation, the HTTNT peptide is a compact coil that resists aggregation. When polyQ is fused to this sequence, it induces in HTTNT, in a repeat-length dependent fashion, a more extended conformation that greatly enhances its aggregation into globular oligomers with HTTNT cores and exposed polyQ. In a second …