Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

University of Kentucky

Molecular and Cellular Biochemistry Faculty Publications

Genetic

Publication Year

Articles 1 - 5 of 5

Full-Text Articles in Life Sciences

Genome-Wide Profiling Of Parp1 Reveals An Interplay With Gene Regulatory Regions And Dna Methylation, Narasimharao Nalabothula, Taha Al-Jumaily, Abdallah M. Eteleeb, Robert M. Flight, Shao Xiaorong, Hunter Moseley, Eric C. Rouchka, Yvonne N. Fondufe-Mittendorf Aug 2015

Genome-Wide Profiling Of Parp1 Reveals An Interplay With Gene Regulatory Regions And Dna Methylation, Narasimharao Nalabothula, Taha Al-Jumaily, Abdallah M. Eteleeb, Robert M. Flight, Shao Xiaorong, Hunter Moseley, Eric C. Rouchka, Yvonne N. Fondufe-Mittendorf

Molecular and Cellular Biochemistry Faculty Publications

Poly (ADP-ribose) polymerase-1 (PARP1) is a nuclear enzyme involved in DNA repair, chromatin remodeling and gene expression. PARP1 interactions with chromatin architectural multi-protein complexes (i.e. nucleosomes) alter chromatin structure resulting in changes in gene expression. Chromatin structure impacts gene regulatory processes including transcription, splicing, DNA repair, replication and recombination. It is important to delineate whether PARP1 randomly associates with nucleosomes or is present at specific nucleosome regions throughout the cell genome. We performed genome-wide association studies in breast cancer cell lines to address these questions. Our studies show that PARP1 associates with epigenetic regulatory elements genome-wide, such as active histone …


Transcriptional Activity Of The Islet Β Cell Factor Pdx1 Is Augmented By Lysine Methylation Catalyzed By The Methyltransferase Set7/9, Aarthi V. Maganti, Bernhard Maier, Sarah A. Tersey, Megan L. Sampley, Amber L. Mosley, Sabire Özcan, Boobalan Pachaiyappan, Patrick M. Woster, Chad S. Hunter, Roland Stein, Raghavendra G. Mirmira Apr 2015

Transcriptional Activity Of The Islet Β Cell Factor Pdx1 Is Augmented By Lysine Methylation Catalyzed By The Methyltransferase Set7/9, Aarthi V. Maganti, Bernhard Maier, Sarah A. Tersey, Megan L. Sampley, Amber L. Mosley, Sabire Özcan, Boobalan Pachaiyappan, Patrick M. Woster, Chad S. Hunter, Roland Stein, Raghavendra G. Mirmira

Molecular and Cellular Biochemistry Faculty Publications

The transcription factor Pdx1 is crucial to islet β cell function and regulates target genes in part through interaction with coregulatory factors. Set7/9 is a Lys methyltransferase that interacts with Pdx1. Here we tested the hypothesis that Lys methylation of Pdx1 by Set7/9 augments Pdx1 transcriptional activity. Using mass spectrometry and mutational analysis of purified proteins, we found that Set7/9 methylates the N-terminal residues Lys-123 and Lys-131 of Pdx1. Methylation of these residues occurred only in the context of intact, full-length Pdx1, suggesting a specific requirement of secondary and/or tertiary structural elements for catalysis by Set7/9. Immunoprecipitation assays and mass …


Transcription Of The Streptococcus Pyogenes Hyaluronic Acid Capsule Biosynthesis Operon Is Regulated By Previously Unknown Upstream Elements, Marina Falaleeva, Oliwia W. Zurek, Robert L. Watkins, Robert W. Reed, Hadeel Ali, Paul Sumby, Jovanka M. Voyich, Natalia Korotkova Dec 2014

Transcription Of The Streptococcus Pyogenes Hyaluronic Acid Capsule Biosynthesis Operon Is Regulated By Previously Unknown Upstream Elements, Marina Falaleeva, Oliwia W. Zurek, Robert L. Watkins, Robert W. Reed, Hadeel Ali, Paul Sumby, Jovanka M. Voyich, Natalia Korotkova

Molecular and Cellular Biochemistry Faculty Publications

The important human pathogen Streptococcus pyogenes (group A Streptococcus [GAS]) produces a hyaluronic acid (HA) capsule that plays critical roles in immune evasion. Previous studies showed that the hasABC operon encoding the capsule biosynthesis enzymes is under the control of a single promoter, P1, which is negatively regulated by the two-component regulatory system CovR/S. In this work, we characterize the sequence upstream of P1 and identify a novel regulatory region controlling transcription of the capsule biosynthesis operon in the M1 serotype strain MGAS2221. This region consists of a promoter, P2, which initiates transcription of a novel small RNA, HasS, an …


Controls Of Nucleosome Positioning In The Human Genome, Daniel J. Gaffney, Graham Mcvicker, Athma A. Pai, Yvonne N. Fondufe-Mittendorf, Noah Lewellen, Katelyn Michelini, Jonathan Widom, Yoav Gilad, Jonathan K. Pritchard Nov 2012

Controls Of Nucleosome Positioning In The Human Genome, Daniel J. Gaffney, Graham Mcvicker, Athma A. Pai, Yvonne N. Fondufe-Mittendorf, Noah Lewellen, Katelyn Michelini, Jonathan Widom, Yoav Gilad, Jonathan K. Pritchard

Molecular and Cellular Biochemistry Faculty Publications

Nucleosomes are important for gene regulation because their arrangement on the genome can control which proteins bind to DNA. Currently, few human nucleosomes are thought to be consistently positioned across cells; however, this has been difficult to assess due to the limited resolution of existing data. We performed paired-end sequencing of micrococcal nuclease-digested chromatin (MNase-seq) from seven lymphoblastoid cell lines and mapped over 3.6 billion MNase-seq fragments to the human genome to create the highest-resolution map of nucleosome occupancy to date in a human cell type. In contrast to previous results, we find that most nucleosomes have more consistent positioning …


Pre-Mrna Secondary Structures Influence Exon Recognition, Michael Hiller, Zhaiyi Zhang, Rolf Backofen, Stefan Stamm Nov 2007

Pre-Mrna Secondary Structures Influence Exon Recognition, Michael Hiller, Zhaiyi Zhang, Rolf Backofen, Stefan Stamm

Molecular and Cellular Biochemistry Faculty Publications

The secondary structure of a pre-mRNA influences a number of processing steps including alternative splicing. Since most splicing regulatory proteins bind to single-stranded RNA, the sequestration of RNA into double strands could prevent their binding. Here, we analyzed the secondary structure context of experimentally determined splicing enhancer and silencer motifs in their natural pre-mRNA context. We found that these splicing motifs are significantly more single-stranded than controls. These findings were validated by transfection experiments, where the effect of enhancer or silencer motifs on exon skipping was much more pronounced in single-stranded conformation. We also found that the structural context of …