Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

University of Kentucky

Molecular and Cellular Biochemistry Faculty Publications

Series

DNA

Discipline
Publication Year

Articles 1 - 3 of 3

Full-Text Articles in Life Sciences

A Comparison Of Nucleosome Organization In Drosophila Cell Lines, Rebecca L. Martin, John Maiorano, Greg J. Beitel, John F. Marko, Graham Mcvicker, Yvonne N. Fondufe-Mittendorf Jun 2017

A Comparison Of Nucleosome Organization In Drosophila Cell Lines, Rebecca L. Martin, John Maiorano, Greg J. Beitel, John F. Marko, Graham Mcvicker, Yvonne N. Fondufe-Mittendorf

Molecular and Cellular Biochemistry Faculty Publications

Changes in the distribution of nucleosomes along the genome influence chromatin structure and impact gene expression by modulating the accessibility of DNA to transcriptional machinery. However, the role of genome-wide nucleosome positioning in gene expression and in maintaining differentiated cell states remains poorly understood. Drosophila melanogastercell lines represent distinct tissue types and exhibit cell-type specific gene expression profiles. They thus could provide a useful tool for investigating cell-type specific nucleosome organization of an organism’s genome. To evaluate this possibility, we compared genome-wide nucleosome positioning and occupancy in five different Drosophila tissue-specific cell lines, and in reconstituted chromatin, and then …


Repair Of O6-Methylguanine Adducts In Human Telomeric G-Quadruplex Dna By O6-Alkylguanine-Dna Alkyltransferase, Lance M. Hellman, Tyler J. Spear, Colton J. Koontz, Manana Melikishvili, Michael G. Fried Sep 2014

Repair Of O6-Methylguanine Adducts In Human Telomeric G-Quadruplex Dna By O6-Alkylguanine-Dna Alkyltransferase, Lance M. Hellman, Tyler J. Spear, Colton J. Koontz, Manana Melikishvili, Michael G. Fried

Molecular and Cellular Biochemistry Faculty Publications

O6-alkylguanine-DNA alkyltransferase (AGT) is a single-cycle DNA repair enzyme that removes pro-mutagenic O6-alkylguanine adducts from DNA. Its functions with short single-stranded and duplex substrates have been characterized, but its ability to act on other DNA structures remains poorly understood. Here, we examine the functions of this enzyme on O6-methylguanine (6mG) adducts in the four-stranded structure of the human telomeric G-quadruplex. On a folded 22-nt G-quadruplex substrate, binding saturated at 2 AGT:DNA, significantly less than the ~ 5 AGT:DNA found with linear single-stranded DNAs of similar length, and less than the value found with the …


Controls Of Nucleosome Positioning In The Human Genome, Daniel J. Gaffney, Graham Mcvicker, Athma A. Pai, Yvonne N. Fondufe-Mittendorf, Noah Lewellen, Katelyn Michelini, Jonathan Widom, Yoav Gilad, Jonathan K. Pritchard Nov 2012

Controls Of Nucleosome Positioning In The Human Genome, Daniel J. Gaffney, Graham Mcvicker, Athma A. Pai, Yvonne N. Fondufe-Mittendorf, Noah Lewellen, Katelyn Michelini, Jonathan Widom, Yoav Gilad, Jonathan K. Pritchard

Molecular and Cellular Biochemistry Faculty Publications

Nucleosomes are important for gene regulation because their arrangement on the genome can control which proteins bind to DNA. Currently, few human nucleosomes are thought to be consistently positioned across cells; however, this has been difficult to assess due to the limited resolution of existing data. We performed paired-end sequencing of micrococcal nuclease-digested chromatin (MNase-seq) from seven lymphoblastoid cell lines and mapped over 3.6 billion MNase-seq fragments to the human genome to create the highest-resolution map of nucleosome occupancy to date in a human cell type. In contrast to previous results, we find that most nucleosomes have more consistent positioning …